Published October 30, 2025 | Version CC-BY-NC-ND 4.0
Journal article Open

Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Some Novel Thiazolo- [1,2,4] Triazolo [1,5-a] Pyridine Derivatives

  • 1. Professor, Department of Chemistry, Sree Chaitanya College of Engineering, Karimnagar, Hyderabad (Telangana), India.
  • 1. Professor, Department of Chemistry, Sree Chaitanya College of Engineering, Karimnagar, Hyderabad (Telangana), India.
  • 2. Assistant Professor, Department of Chemistry, Government Degree College for Women (Autonomous), Nalgonda, Hyderabad (Telangana), India.
  • 3. Assistant Professor, Department of Chemistry, Government Degree College, Ibrahimpatnam, Ranga Reddy, Hyderabad (Telangana), India.

Description

Abstract: A novel four-step scientific protocol has been reported for the synthesis of thiazolo- [1,2,4] triazolo[1,5-a] pyridine and its derivatives (6a-c) as target moieties in good overall yields by using 1-(2-(Trifluoromethyl)-5-methylthiazol-4- yl) ethanone (1) as starting compound. The IR, PMR, Mass spectral data, and elemental analysis validated the chemical structures of all the intermediates and products. Furthermore, the newly synthesised intermediates and final derivatives were screened for their antibacterial activity against different bacterial strains, and it was found that a few of them exhibited noteworthy antibacterial activity with varying degrees of disparity.

Files

B203005021025.pdf

Files (571.5 kB)

Name Size Download all
md5:02280f21e58832c8bdbbaae2285d6216
571.5 kB Preview Download

Additional details

Identifiers

DOI
10.54105/ijac.B2030.05021025
EISSN
2582-8975

Dates

Accepted
2025-10-15
Manuscript received on 02 May 2025 | First Revised Manuscript received on 19 May 2025 | Second Revised Manuscript received on 16 September 2025 | Manuscript Accepted on 15 October 2025 | Manuscript published on 30 October 2025.

References

  • Musarurwa, H. & Tavengwa, N. T. (2021) Sustainable extraction of pesticides in food and environmental samples using emerging green adsorbents. Sustainable Chemistry and Pharmacy (CSP) (Vol. 24, Issue 12, Article number 100545). DOI: https://doi.org/10.1016/j.jfca.2019.103314
  • Rodrigues, L. D. Sunil, D. Chaithra, D. Bhagavath, P. (2020), 1,2,3/1,2,4-Triazole containing liquid crystalline materials: An up-todate review of their synthetic design and mesomorphic behaviour, Journal of Molecular Liquids (JML) (Vol. 297, Issue 1, Article number 111909. DOI: https://doi.org/10.1016/j.molliq.2019.111909.
  • Sharma, A. Agrahari, A. K. Rajkhowa, S. Tiwari, V. K. (2022). Emerging impact of triazoles as anti-tubercular agent. European Journal of Medicinal Chemistry (EJMC) (Vol. 238, Issue-5, Article number 114454). DOI: https://doi.org/10.1016/j.ejmech.2022.114454
  • Zhang, S. Xu, Z. Gao, C. Ren, Q.C. Chang, L. Lv, Z.S. (2017). Triazole derivatives and their anti-tubercular activity. European Journal of Medicinal Chemistry (EJMC) (Vol. 138, Issue 29, pp. 501- 513). DOI: https://doi.org/10.1016/j.ejmech.2017.06.051
  • Feng, Gao. Tengfei, W. Jiaqi, X. Gang, H. (2019). Antibacterial activity study of 1,2,4-triazole derivatives. European Journal of Medicinal Chemistry (EJMC) (Vol. 173, Issue 1, pp. 274-281) DOI: https://doi.org/10.1016/j.ejmech.2019.04.043
  • Li, Z. Cao, Y. Zhan, P. Pannecouque, C. Balzarini, J. De Clercq, E. Liu, X. (2013). Synthesis and anti-HIV evaluation of novel 1,2,4- triazole derivatives as potential non-nucleoside HIV-1 reverse transcriptase inhibitors. Letters in Drug Design & Discovery (LDDD) (Vol. 10, Issue 1, pp. 27-34). DOI: https://doi.org/10.2174/ 15701801380 4142429
  • Pinto, A. Chan, R. C. (2009). Lack of allergic cross-reactivity between fluconazole and voriconazole. Antimicrobial Agents and Chemotherapy (AAC) (Vol. 53, Issue-4, pp. 1715-1716. DOI: https://doi.org/:10.1128/ AAC.01500-08
  • Smith, J., Safdar, N., Knasinski, V., Simmons, W., Bhavnani, S. M., Ambrose, P. G. (2006). Voriconazole herapeutic drug monitoring. Antimicrobial Agents and Chemotherapy (AAC) (Vol. 50, Issue-4, pp. 1570-1572). DOI: https://doi.org/10.1128/AAC.50.4.1570-1572.2006
  • Graci, J. D. Cameron, C. E. (2006). Mechanisms of action of ribavirin against distinct viruses. Reviews in Medical Virology (RMV) (Vol. 16, Issue 1, pp 37-48). DOI: https://doi.org/10.1002/rmv.483
  • Wellington, K., Plosker, G. L. (2002). Rizatriptan: an update of its use in the management of migraine. Drugs (Vol. 62, Issue-10, pp. 1539- 1574) DOI: https://doi.org/10.2165/00003495-200262100-00007
  • Slomovitz, B. M. Filiaci, V. L. Walker, J. L. Taub, M.C. Finkelstein, K. A. Moroney, J. W. (2022). A randomized phase II trial of everolimus and letrozole or hormonal therapy in women with advanced, persistent or recurrent endometrial carcinoma: A GOG Foundation study. Gynecologic Oncology (GO). (Vol. 164, Issue-3, pp. 481-491). DOI: https://doi.org/10.1016/j.ygyno.2021.12.031.
  • Kucukguzel, S.G and Cikla-Suzgun, P. (2015). Recent advances in bioactive 1,2,4-triazole-3-thiones. European Journal of Medicinal Chemistry (EJMC) (Vol. 97, pp. 830-870). DOI: https://doi.org/10.1016/j.ejmech.2014.11.033
  • Takahashi, K. Yamagishi, G. Hiramatsu, T. Hosoya, A. Onoe, K. Doi, H. (2011). Practical synthesis of precursor of [N-methyl11C] vorozole, an efficient PET tracer targeting aromatase in the brain. Bioorganic Medicinal Chemistry (BMC). (Vol. 19, Issue- 4, pp. 1464-1470). DOI: https://doi.org/10.1016/j.bmc.2010.12.057
  • Striano, P., McMurray, R., Santamarina, E., Falip, M. (2018). Rufinamide for the treatment of Lennox-Gastaut syndrome: evidence from clinical trials and clinical practice. Epileptic Disorders (ED) (Vol. 20, Issue-1, pp. 13-29) DOI: https://doi.org/10.1684/epd. 2017.0950
  • Yang, Y. Rasmussen, B. A. Shlaes, D. M. (1999). Class A betalactamases--enzyme-inhibitor interactions and resistance. Pharmacology & Therapeutics (PT) (Vol. 83, Issue-2, pp. 141-151) DOI: https://doi.org/10.1016/S0163-7258(99)00027-3
  • Gomez, I. Alonso, E. Ramon, D. J. Yus, M. (2000). Naphthalenecatalysed Lithiation of Chlorinated Nitrogenated Aromatic Heterocycles and Reaction with Electrophiles. Tetrahedron (Vol. 56, Issue- 24, pp. 4043-4052). DOI: https://doi.org/10.1016/S0040-4020(00)00318-5
  • Altaf, A. A. Shahzad, A. Gul, Z. Rasool, N. Badshah, A. Lal, B. Khan, E. J. (2015). Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea. Drug Design and Medicinal Chemistry (DDMC) (Vol. 1, 1, pp. 1-11) DOI: https://doi.org/10.1155/2015/913435
  • Man, X. Yongzhi, P. Li, Z. Shulin, W. Jiayou, J. Rakesh, K. P. (2019). Triazole derivatives as inhibitors of Alzheimer's disease: Current developments and structure-activity relationships. European Journal of Medicinal Chemistry (EJMC) (Vol. 180, Issue 15 pp. 656-672) DOI: https://doi.org/10.1016/j.ejmech.2019.07.059.
  • Litvinov, P. V. Dotsenko, V. V. Krivokolysko, S. G. Thienopyridines: synthesis, properties, and biological activity (2005). Russian Chemical Bulletin, International Edition (RCBIE) (Vol. 54, Issue- 4, pp. 864- 904. DOI: https://doi.org/ 10665285/05/54040864/2005.
  • Schnute, M. E. Anderson, D. J. Brideau, R. J. (2007). 2-Aryl-2- hydroxyethylamine substituted 4-oxo-4,7-dihydrothieno- [2,3- b]pyridines as broad-spectrum inhibitors of human herpesvirus polymerases. Bioorganic & Medicinal Chemistry Letters (BMCL) (Vol. 17, Issue 12, pp. 3349-3353). DOI: https://doi.org/10.1016/j.bmcl.2007.03.102
  • Bahekar, R. H. Jain, M. R. Jadav, P.A. Prajapati, V.M. Patel, D.N. Gupta, A.A. Sharma, A. Tom, Andyopadhya, D. Modi, H. Patel, P. R. (2007). Design, synthesis, and biological evaluation of substituted-N- (thieno[2,3-b]pyridin-3-yl)-guanidines, N-(1H-pyrrolo[2,3-b]pyridin3-yl)-guanidines, and N-(1H-indol-3-yl)-guanidines. Bioorganic & Medicinal Chemistry (BMC) (Vol. 15, Issue 9, pp. 3248-3265). DOI: https://doi.org/10.1016/j.bmc.2007.02.029
  • Abdel-Rahman, A. E. Bakhite, E. A. Al-Taifi, E. A. (2003). Synthesis and antimicrobial testing of some new S-substituted-thiopyridines, thienopyridines, pyridothienopyrimidines and pyridothienotriazines Pharmazie (Vol. 58, Issue 6, pp. 372-379). DOI: https://doi.org/10.1002/chin.200339135
  • Hayakawa, I. Shioya, R. Agatsuma, T. Furukawa, H. Sugano, Y. (2004). Thienopyridine and benzofuran derivatives as potent antitumour agents possessing different structure–activity relationships. Bioorganic & Medicinal Chemistry Letters (BMCL) (Vol. 14, Issue 13, pp. 3411-3415). DOI: https://doi.org/10.1016/j.bmcl.2004.04.079
  • Ichiro, H, Rieko, S., Toshinori, A., Hidehiko, F., Yuichi, S. (2004) Thienopyridine and benzofuran derivatives as potent anti-tumour agents possessing different structure-activity relationships, Bioorganic Medicinal Chemistry Letters (BMCL) (Vol. 14, Issue-13, pp. 3411- 3414) DOI: https://doi.org/10.1016/j.bmcl.2004.04.079.
  • Krauze, A. Germame, S. Eberlins, O. Sturms, I. Klusa, V. Duburs, G. (1999). Derivatives of 3-cyano-6-phenyl-4-(3`-pyridyl)-pyridine2(1H)-thione and their Neurotropic activity. European Journal of Medicinal Chemistry (EJMC) (Vol. 34, Issue-4, pp. 301-310). DOI: https://doi.org/10.1016/S0223-5234(99)80081-6.
  • Barry, A. I. (1976). The antimicrobial Susceptibility Test, Principles and Practices. 4th Ed. (ELBS), 1976, 80. https://books.google.co.in/books/about/The_Antimicrobic_Susceptibil ity_Test.html?id=LPNqAAAAMAAJ&redir_esc=y