A single-cell atlas of multiple myeloma disease evolution
Authors/Creators
Description
A collection of computationally integrated (batch corrected) scRNA-seq and scTCR-seq data from a large cohort of bone marrow and peripheral blood samples from patients with multiple myeloma, myeloma precursor disease (MGUS and SMM) and non-cancer controls.
Datasets
- dataDescription.xlsx - Definition of dataset components.
- panImmune.h5ad - All cells types integrated gene expression object.
- Tcell.h5ad - T cells integrated object.
- Tcell-scTCR.csv - Single-cell TCR data.
- Botta_2023-predicted.h5ad - Single-cell gene expression data from Botta et al. analysed by label transfer.
- metadata.donor.csv - Donor metadata.
Published data acquisition
Data shared through the gene expression omnibus (GEO) can be accessed for Maura et al. under accession GSE161195, Bailur et al. GSE163278, Oetjen et al. GSE120221, Granja et al. GSE139369, Zavidij et al. GSE124310, Kfoury et al. GSE143791, Botta et al. GSE205393, and Zheng et al. GSE156728. Data shared via dbGaP for Sklavenitis-Pistofidis et al. can be accessed under accession phs002476.v1.p1. Data shared online can be accessed for Stephenson et al. (via https://covid19cellatlas.org/), Conde et al. (via https://www.tissueimmunecellatlas.org/), and Liu et al. (via https://explore.data.humancellatlas.org/projects/2ad191cd-bd7a-409b-9bd1-e72b5e4cce81). Single-cell data from Sklavenitis-Pistofidis et al. and extended clinical data from Maura et al. (i.e. paraprotein) are omitted and must be acquired through direct contact with these authors.
Unprocessing sequencing data (Cellranger GEX and VDJ .bam files) have been deposited in the Sequence Read Archive under the accession PRJNA1401834. Raw feature-barcode matrices and filter contig annotation TCR files have been deposited on Zenodo under accession 13171648.
Contact information
- Kane Foster - kane.foster.web@gmail.com
- Kwee Yong - kwee.yong@ucl.ac.uk
Please cite our pre-print if you use this resource in your research.
Files
metadata-donor.csv
Files
(7.2 GB)
| Name | Size | Download all |
|---|---|---|
|
md5:2767f7f87e53537ec64936d25229c478
|
322.8 MB | Download |
|
md5:9254003f701c9f030dce7140f1f25f34
|
18.3 kB | Download |
|
md5:fdab6ebdb2722a1bb76f15b165558fa1
|
12.8 kB | Preview Download |
|
md5:2ce83462ada87048c1d808af5b2c82b4
|
4.9 GB | Preview Download |
|
md5:378aa6b13e036997d9e9cf7e6e1a03ed
|
22.6 MB | Preview Download |
|
md5:0b15bfd1eef57600abc3ec940099e562
|
2.0 GB | Preview Download |