Published October 23, 2025 | Version Ver6
Software Open

256×256 Gamma-Matrix QED Calculations: Compton, Muon-Pair Production, Møller, Bhabha

Authors/Creators

Contributors

Researcher:

Description

We provide Mathematica notebooks and PDFs for four QED processes computed with a two index Gamma basis realized in a 256×256 representation. Version 6 revises the metric weighting so that  $g^{\mu \nu} g_{\nu \sigma} = \delta^{\mu}_{\ \sigma}$  holds in code. 

In the flat limit the 256×256 results coincide with standard 4×4 outcomes. In curved spacetime, each scattering process can be evaluated using explicit local metric values,allowing numerical examination of deviations from the flat-space limit.

This version enables direct construction of the effective Gamma operators with given local metric inputs,making the physical impact of curvature visible in computed observables.

Addendum for Ver.6 (new attachment)

• We include the verification notebook “05_gamma256_anticommutation_check Ver6”.
  It bulk-tests all 16x16 combinations of the two-index 256x256 basis (via determinant and related checks), confirming both the flat-space anticommutation of the 16 basis blocks and the metric-weighted mixed anticommutation:

$$
\begin{aligned}
\Gamma_{\mu\nu}(x) &:= \Gamma_{\mu}{}^{\rho}\,g_{\rho\nu}(x),\\[2pt]
\{\widehat{\Gamma}_{\mu}(x),\,\widehat{\Gamma}_{\nu}(x)\} &= 2\,g_{\mu\nu}(x)\,I_{256},\\[2pt]
g^{\mu\nu}(x)\,g_{\nu\sigma}(x) &= \delta^{\mu}{}_{\sigma}.
\end{aligned}
$$

  The script prints: “Gamma matrices … anticommutation relation confirmed OK” and “Mixed anticommutation relation OK”.

• The tests use an explicit constant metric with off-diagonal entries (e.g.,$g_{02}=(1/10)^2$,$g_{23}=1/20)^2$, and scaled diagonals $g_{11}=g_{22}=g_{33}=(100/99)^2$), demonstrating that the matrix formalism remains consistent beyond diagonal metrics. Representative pairs reduce to  “scalar × identity” for identical index pairs and to the zero matrix for different pairs, as expected.

• Practically, Ver.6 constructs $\widehat{\Gamma}_{\nu}(x)$ directly from local metric inputs (no spin connection) and documents numeric checks that prevent spurious $g^2$ double counting in the algebra.

Files

05_gamma256_anticommutation _check Ver6.pdf

Files (3.0 MB)

Name Size Download all
md5:a17a76a5117d11d9e14997c48c065c3b
321.3 kB Download
md5:bfe15da3b0d8e4d7ba697137ae351ac5
161.9 kB Preview Download
md5:192cfd237f700a70f1e01d841dd307e6
166.7 kB Download
md5:196f8d185a4d7935fa1db815d37ac3be
155.1 kB Preview Download
md5:e5292e7e63a0521687e26e1f8597e6bf
185.7 kB Download
md5:cd6c3cb60e20805d97e2a1bba940c929
152.0 kB Preview Download
md5:a56ca8c565d3fb2d5d182d1c64e54b81
194.5 kB Download
md5:b298dcc7933b5ee94839e18c24f20a09
162.3 kB Preview Download
md5:3f61847ab625900e3849675ae3f2c45f
239.1 kB Download
md5:664ec4dc263a3193d6362409560b8555
269.7 kB Preview Download
md5:1fb22478b7265c4704c2d9082434e66b
933.6 kB Preview Download
md5:d9e94012fbdc134fab78a39a4bc945a4
43.6 kB Preview Download

Additional details

Dates

Issued
2025-10-23