The Nabla Lune Operator A Resonant Differential Extension of Lorentz Invariance and a Certified Constraint Proof of the Collatz Conjecture
Creators
Contributors
Other:
Description
The Nabla Lune Operator: A Resonant Differential Extension of Lorentz Invariance and a Certified Constraint Proof of the Collatz Conjecture
This deposit presents the verified mathematical and computational proof structure linking the Collatz Conjecture to harmonic curvature dynamics within the Lunecitic Framework.
The accompanying artifacts include the verified constraint sets (constraints.smt2
, constraints.json
), solver certificates (online_sat.json
, certificate_A_14_B_6_K4.json
), provenance manifests, and resonance parameter data that confirm the boundedness and contraction criteria derived from the Nabla Lune Operator.
These results unify discrete dynamical contraction mappings with continuous Lorentz-harmonic curvature under the extended differential operator $\nablal$, establishing a reproducible bridge between number-theoretic and relativistic invariants.
The mathematical formulation is detailed in the associated paper, The Nabla Lune Operator: A Resonant Differential Extension of Lorentz Invariance, DOI 10.5281/zenodo.17292931.
Data and Code Availability:
The verification artifacts and summary scripts provided here are released for independent validation and citation. Core engine components (constraint generator, resonance synthesis modules, and Lunecitic Engine libraries) remain proprietary.
Related works:
– Harte (2025), The Lunecitic Framework™: Reconciling the Hubble Tension via a Lunic Projection of Space Time, Zenodo 10.5281/zenodo.17216399
– Harte (2025), Beyond the Stiffness Limit: Resonant Metrics, Delay Compression, and Superluminal Transit in the Lunecitic Framework™, Zenodo 10.5281/zenodo.17180352
– Harte (2025), The Lunecitic Lens: A Framework for Parsimony in Quantum and Relativistic Systems, Zenodo 10.5281/zenodo.17249805
Keywords: Collatz Conjecture, Certified Proof, Constraint Verification, SMT Solver, Z3, Number Theory, Resonant Geometry, Lorentz Invariance, Lunecitic Framework, Nabla Lune Operator, Mathematical Physics, Computational Proof, Open Verification.
Correspondence: Shane A. J. Harte — harteessence@outlook.com | psychotherapy.harteessence.ie
Notes
Files
Collatz Proof Upload.zip
Files
(3.0 MB)
Name | Size | Download all |
---|---|---|
md5:08321674e60f374a5b0a2907d8b0bab0
|
1.9 MB | Preview Download |
md5:65db3be4f9e81df4dbe7719a8cb5278d
|
1.1 MB | Preview Download |
Additional details
Related works
- Continues
- Preprint: 10.5281/zenodo.17292931 (DOI)
References
- Lorentz, H. A. (1904). Electromagnetic Phenomena in a System Moving with Any Velocity Less Than That of Light. Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6, 809–831.
- Einstein, A. (1905). Zur Elektrodynamik bewegter Körper [On the Electrodynamics of Moving Bodies]. Annalen der Physik, 17, 891–921.
- Minkowski, H. (1908). Raum und Zeit [Space and Time]. Physikalische Zeitschrift, 10, 104–111.
- Noether, E. (1918). Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse, 235–257.
- Dirac, P. A. M. (1936). Relativity and Quantum Mechanics. Proceedings of the Royal Society A, 155, 447–459.
- Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York.
- Penrose, R. (2004). The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London.
- Hobson, M. P., Efstathiou, G. P., & Lasenby, A. N. (2006). General Relativity: An Introduction for Physicists. Cambridge University Press.
- Zee, A. (2010). Quantum Field Theory in a Nutshell (2nd ed.). Princeton University Press.
- Harte, S. A. J. (2025). The Lunecitic Framework™: Reconciling the Hubble Tension via a Lunic Projection of Space Time. Zenodo. https://doi.org/10.5281/zenodo.17216399
- Harte, S. A. J. (2025). Beyond the Stiffness Limit: Resonant Metrics, Delay Compression, and Superluminal Transit in the Lunecitic Framework™. Zenodo. https://doi.org/10.5281/zenodo.17180352
- Harte, S. A. J. (2025). The Lunecitic Lens: A Framework for Parsimony in Quantum and Relativistic Systems. Zenodo. https://doi.org/10.5281/zenodo.17249805
- Harte, S. A. J. (2025). Certified Constraint Framework for the Collatz Conjecture. Zenodo. https://doi.org/10.5281/zenodo.17251123