Published November 5, 2025 | Version v1
Dataset Open

Code Repository for 'A Case for an Inhomogeneous Einstein-de Sitter Universe'

  • 1. Institute of Physics and Astronomy, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
  • 2. HUN-REN-ELTE Extragalactic Astrophysics Research Group, 1117 Budapest, Hungary
  • 3. Institute of Nuclear Techniques, Budapest University of Technology and Economics, 1111 Budapest, Hungary
  • 4. Department of Physics, University of Miami, Coral Gables, FL 33124, USA
  • 5. L2IT, Laboratoire des 2 Infinis - Toulouse, Université de Toulouse, CNRS/IN2P3, UPS, F-31062 Toulouse Cedex 9, France}

Description

The repository contains Python code to test the iEdS and flat ΛCDM cosmological models against the DESI DR2 BAO and Pantheon+ SNIa datasets. Parameter estimation is performed with dynesty’s DynamicNestedSampler (see the article and documentation). Additionally, we evaluate the goodness of a camb fit (see the article and documentation) with respect to the Planck 2018 CMB TT power spectrum. Detailed descriptions and usage instructions are included within the code file.

Required input files:

The repository includes a zipped archive of fit outputs: results.zip. A detailed description of all files inside the archive is provided in results.zip/README.rtf.

The repository also includes PDF files that present the fit results as corner plots, illustrating the posterior distributions of the fitted parameters. These plots display the projections of the dynesty samples in one- and two-dimensional parameter spaces. The 1D histograms show the median of the posterior parameter distributions, along with the 1σ uncertainties represented by the 16th and 84th percentiles. In the 2D distribution panels, contours are plotted at 0.5σ, 1σ, 1.5σ, and 2σ levels.

Corresponding author of the article: Peter Raffai, peter.raffai@ttk.elte.hu
Corresponding author of the repository: Adrienn Pataki, patakia@student.elte.hu

Files

Posteriors_BAO.pdf

Files (9.2 MB)

Name Size Download all
md5:f9be744c5ff5d3a97a8cc1c9bdc1b495
57.7 kB Download
md5:6c62c2953c34f6200eb25f9430d5d773
57.7 kB Download
md5:6258fd72d177bda634cb2b53d1666fdd
57.6 kB Download
md5:194bb5c96a485cd7e3c5245e21819698
439 Bytes Preview Download
md5:b92e0710925953b8baea7014f2725969
3.6 kB Preview Download
md5:2981b6ebd07b7769576cbc4c7281c45c
33.0 kB Preview Download
md5:241d3d6879d00ae89dce6c5a012f0a3b
54.4 kB Preview Download
md5:001cb8136f14f0fe51f3c1cc24be58fc
126.8 kB Preview Download
md5:d8fdabc66352b0d837284293efe96264
128.1 kB Preview Download
md5:da20063e1ea92426605fc9207e6deddb
127.8 kB Preview Download
md5:d24429d3d7c06243cf5f2478dd28908b
8.5 MB Preview Download