Birch–Swinnerton–Dyer via an Operator–Fredholm Method
Authors/Creators
Description
We develop a clean operator-Fredholm approach to the Birch–Swinnerton–Dyer problem for an elliptic curve E/Q. On the E-isotypic Neron–Tate subspace S subset J0(N)(Q) otimes R we construct a windowed Hecke operator U_S^infty(s) whose principal parts at s=1 match those of log L(E,s). A finite R x R renormalization (R = 1 + omega_mult(N)) cancels archimedean/bad/window constants while preserving the principal part on S, hence C(p;E) = 0. Via the Hecke->Kummer bridge we obtain global Kummer classes with controlled local images; by Tate local duality the global pairing matrix reduces to the Neron–Tate Gram on S. Consequently rank E(Q) = ord_{s=1} L(E,s); uniformly in n, dim_Fp Sel_{p^n}(E/Q) <= r + Delta_loc(p;E). Finally we assemble the leading coefficient at s=1 in the standard normalizations (Omega_E, product c_p, |E(Q)_tors|) with an isogeny-invariant factor kappa. We do not assert a global identity det = L; on S_perp we use only regularized Fredholm determinants, and a spectral gap at s=1 ensures holomorphic nonvanishing.
MSC 2020: Primary 11G05; Secondary 11G40, 14H52, 14G10, 47A53.
Code availability: A compact demo pack (Sage/Python scripts with minimal data)
is hosted on GitHub.
Files
BSD_Operator_Fredholm_miruka_2025.pdf
Files
(2.5 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:ed81547cf9de7f03bf506fea4e6ecb90
|
2.5 MB | Preview Download |
Additional details
Dates
- Created
-
2025-08-16
Software
- Repository URL
- https://github.com/specator-tlca/BSD
- Programming language
- Python
- Development Status
- Active
References
- Birch, B. J.; Swinnerton-Dyer, H. P. F. Notes on elliptic curves. I. J. Reine Angew. Math. 212 (1963), 7–25.
- Birch, B. J.; Swinnerton-Dyer, H. P. F. Notes on elliptic curves. II. J. Reine Angew. Math. 218 (1965), 79–108.
- Coates, J.; Wiles, A. On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39 (1977), 223–251.
- Deligne, P. La conjecture de Weil. I. Publ. Math. IHÉS 43 (1974), 273–307.
- Deligne, P. La conjecture de Weil. II. Publ. Math. IHÉS 52 (1980), 137–252.
- Diamond, F.; Shurman, J. A First Course in Modular Forms. GTM 228, Springer, New York, 2005.
- Gross, B. H.; Zagier, D. B. Heegner points and derivatives of L-series. Invent. Math. 84 (1986), 225–320.
- Kato, T. Perturbation Theory for Linear Operators. 2nd ed., Springer-Verlag, Berlin–New York, 1976; reprint in Classics in Mathematics, 1995.
- Kolyvagin, V. A. Euler systems. In: The Grothendieck Festschrift, Vol. II, Progress in Mathematics 87, Birkhäuser, 1990, 435–483.
- Kolyvagin, V. A. Finiteness of E(Q) and X (E, Q) for a subclass of Weil curves. Math. USSR-Izvestiya 32 (1989), no. 3, 523–541.
- Milne, J. S. Arithmetic Duality Theorems. 2nd ed., BookSurge, 2006.
- Neukirch, J.; Schmidt, A.; Wingberg, K. Cohomology of Number Fields. 2nd ed., Grundlehren 323, Springer, 2008.
- Simon, B. Trace Ideals and Their Applications. 2nd ed., AMS Surveys and Monographs 120, 2005.
- Bornemann, F. On the numerical evaluation of Fredholm determinants. Math. Comp. 79 (2010), 871–915.
- Silverman, J. H. The Arithmetic of Elliptic Curves. 2nd ed., GTM 106, Springer, New York, 2009.