Cultivo de pepino (Cucumis sativus L.): Respuestas morfoagronómicas y aplicaciones de nanopartículas de quitosano
Description
Este libro explora el potencial transformador de las nanopartículas de quitosano en el cultivo del pepino (Cucumis sativus L.), un cultivo estratégico por su valor económico, nutricional y social a nivel mundial. Frente a los desafíos actuales de la agricultura, como el uso excesivo de fertilizantes, la presión de plagas y enfermedades, y los efectos del cambio climático, esta investigación propone soluciones innovadoras que combinan biotecnología y nanotecnología para una producción más eficiente y sostenible. El quitosano, biopolímero natural con propiedades antimicrobianas y bioestimulantes, y sus versiones en nanopartículas, se presentan como herramientas clave para potenciar el crecimiento vegetativo, mejorar la calidad de los frutos y reducir la dependencia de insumos químicos. Su aplicación favorece la absorción de nutrientes, la retención de agua y la resistencia de las plantas frente a estreses bióticos y abióticos, promoviendo cultivos más saludables y sostenibles. El estudio se desarrolló en condiciones controladas de invernadero en el Campus Experimental “La María” de la Universidad Técnica Estatal de Quevedo (UTEQ), Ecuador; permitiendo un manejo preciso de variables agrícolas como riego, fertilización y densidad de siembra. Los resultados demuestran que la aplicación de nanopartículas de quitosano optimiza el crecimiento vegetativo, el desarrollo de frutos y la calidad del cultivo, ofreciendo alternativas prácticas para una agricultura más eficiente, resiliente y ambientalmente responsable. Además, la investigación contribuye al desarrollo académico y profesional de los estudiantes, consolidando un modelo de producción hortícola que integra ciencia, innovación y sostenibilidad. Este libro no solo aporta evidencia científica, sino que también inspira a productores, investigadores y estudiantes a adoptar prácticas innovadoras que fusionan conocimiento, tecnología y responsabilidad ambiental, consolidando un modelo agrícola eficiente, resiliente y consciente del entorno.
Files
Ebook_978-1-968794-11-8.pdf
Files
(2.9 MB)
Name | Size | Download all |
---|---|---|
md5:c8406fbb14ba8702ff67d1eb288628eb
|
99.5 kB | Preview Download |
md5:6f8535a74222a87b9bb76e28c767cf58
|
2.8 MB | Preview Download |
Additional details
Identifiers
Related works
- Is cited by
- Book: 978-1-968794-11-8 (ISBN)
Dates
- Available
-
2025-09-22
Software
References
- Abdel-Aziz, H. M. M., Hasaneen, M. N. A., & Omer, A. M. (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 14(1), e0902. https://doi.org/10.5424/sjar/2016141-8205 Agatemor, U. M.-M., Nwodo, O. F. C., & Anosike, C. A. (2018). Phytochemical and proximate composition of cucumber (Cucumis sativus) fruit from Nsukka, Nigeria. African Journal of Biotechnology, 17(38), 1215–1219. https://doi.org/10.5897/AJB2018.16410 Ahsan, S. M., Thomas, M., Reddy, K. K., Sooraparaju, S. G., Asthana, A., & Bhatnagar, I. (2018). Chitosan as biomaterial in drug delivery and tissue engineering. International Journal of Biological Macromolecules, 110, 97–109. https://doi.org/10.1016/j.ijbiomac.2017.08.140 Akhi, K., & Islam, S. (2020). Comparative profitability analysis and policy options for sustaining integrated pest management practices on cucumber (Cucumis sativus L.) production. American Journal of Agricultural and Biological Sciences, 15(1), 23–30. https://doi.org/10.3844/ajabssp.2020.23.30 Akhtar, G., Faried, H. N., Razzaq, K., Ullah, S., Wattoo, F. M., Shehzad, M. A., & Chattha, M. S. (2022). Chitosan-induced physiological and biochemical regulations confer drought tolerance in pot marigold (Calendula officinalis L.). Agronomy, 12(2), 474–490. https://doi.org/10.3390/agronomy12020474 Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P. P., Barros, L., & Ferreira, I. C. F. R. (2021). Phenolic compounds: current industrial applications, limitations and future challenges. Food & function, 12(1), 14–29. https://doi.org/10.1039/d0fo02324h Alenazi, M. M., El-Ebidy, A. M., El-Shehaby, O. A., Seleiman, M. F., Aldhuwaib, K. J., & Abdel-Aziz, H. M. M. (2024). Chitosan and Chitosan Nanoparticles Differentially Alleviate Salinity Stress in Phaseolus vulgaris L. Plants. Plants (Basel, Switzerland), 13(3), 398. https://doi.org/10.3390/plants13030398 Allard, S. M., Ottesen, A. R., & Micallef, S. A. (2020). Rain induces temporary shifts in epiphytic bacterial communities of cucumber and tomato fruit. Scientific Reports, 10(1), 1765. https://doi.org/10.1038/s41598-020-58671-7 Amiri, N., Khebiza, M. Y., & Messouli, M. (2023). The impact of climate change on insect pests damaging crops: How insect pests damage crops. En A. Karmaoui (Ed.), Climate Change and the Economic Importance and Damages of Insects. (pp. 73–101). IGI Global. Anusuya, S., & Banu, K. N. (2016). Silver-chitosan nanoparticles induced biochemical variations of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 8, 39–44. https://doi.org/10.1016/j.bcab.2016.08.005 Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An overview of its properties and applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256 Aranaz, I., Harris, R., & Heras, A. (2010). Chitosan amphiphilic derivatives. Chemistry and applications. Current Organic Chemistry, 14(3), 308–330. https://doi.org/10.2174/138527210790231919 Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., & Heras, A. (2009). Functional characterization of chitin and chitosan. Current Chemical Biology, 3(2), 203–230. https://doi.org/10.2174/2212796810903020203 Arya, S. S., Rookes, J. E., Cahill, D. M., & Lenka, S. K. (2022). Chitosan nanoparticles and their combination with methyl jasmonate for the elicitation of phenolics and flavonoids in plant cell suspension cultures. International journal of biological macromolecules, 214, 632–641. https://doi.org/10.1016/j.ijbiomac.2022.06.145 Azimi, F., Oraei, M., Gohari, G., Panahirad, S., & Farmarzi, A. (2021). Chitosan-selenium nanoparticles (Cs-Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. Plant physiology and biochemistry: PPB, 167, 257–268. https://doi.org/10.1016/j.plaphy.2021.08.013 Balusamy, S. R., Rahimi, S., Sukweenadhi, J., Sunderraj, S., Shanmugam, R., Thangavelu, L., Mijakovic, I., & Perumalsamy, H. (2022). Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydrate Polymers, 284, 119189. https://doi.org/10.1016/j.carbpol.2022.119189 Bao, J., Hou, C., Chen, M., Li, J., Huo, D., Yang, M., Luo, X., & Lei, Y. (2015). Plant esterase–chitosan/gold nanoparticles–graphene nanosheet composite-based biosensor for the ultrasensitive detection of organophosphate pesticides. Journal of Agricultural and Food Chemistry, 63(47), 10319–10326. https://doi.org/10.1021/acs.jafc.5b03971 Batista, M. K. S., Pinto, L. F., Gomes, C. A. R., & Gomes, P. (2006). Novel highly-soluble peptide–chitosan polymers: Chemical synthesis and spectral characterization. Carbohydrate Polymers, 64(2), 299–305. https://doi.org/10.1016/j.carbpol.2005.11.040 Bojacá, C., & Monsalve, O. (2012). Manual de producción de pepino bajo invernadero. Fundación Universidad de Bogotá Jorge Tadeo Lozano. Camacho Ferre, F. (2011). El cultivo de pepino bajo invernadero. Universidad de Almería. https://cooperativas-agro.s3.eu-west-1.amazonaws.com/old/docs/02430.pdf Casaca, Á. D. (2005). Guías tecnológicas de frutas y vegetales. PROMOSTA. Celis, R., Adelino, M. A., Hermosín, M. C., & Cornejo, J. (2012). Montmorillonite–chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. Journal of Hazardous Materials, 209–210, 67–76. https://doi.org/10.1016/j.jhazmat.2011.12.074 Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Tanveer, M., & Islam, T. (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10(12), 624. https://doi.org/10.3390/agriculture10120624 Chandra, S., Chakraborty, N., Chakraborty, A., Rai, R., Bera, B., & Acharya, K. (2014). Abiotic elicitor-mediated improvement of innate immunity in Camellia sinensis. Journal of Plant Growth Regulation, 33, 849–859. https://link.springer.com/article/10.1007/s00344-014-9436-y Chattopadhyay, D. P., & Inamdar, M. S. (2011). Aqueous behaviour of chitosan. International Journal of Polymer Science, 2010, e939536. https://doi.org/10.1155/2010/939536 Chen, C., Gao, Z., Qiu, X., & Hu, S. (2013). Enhancement of the controlled-release properties of chitosan membranes by crosslinking with suberoyl chloride. Molecules, 18(6), 7239–7252. https://doi.org/10.3390/molecules18067239 Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R., & Saharan, V. (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports, 7(1), 9754. https://www.nature.com/articles/s41598-017-08571-0 Chouhan, D., & Mandal, P. (2021). Applications of chitosan and chitosan based metallic nanoparticles in agrosciences-A review. International Journal of Biological Macromolecules, 166, 1554–1569. https://doi.org/10.1016/j.ijbiomac.2020.11.035 Confederat, L. G., Tuchilus, C. G., Dragan, M., Sha'at, M., & Dragostin, O. M. (2021). Preparation and antimicrobial activity of chitosan and its derivatives: A concise review. Molecules, 26(12), 3694. https://doi.org/10.3390/molecules26123694 Cosme, P., Rodríguez, A. B., Espino, J., & Garrido, M. (2020). Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants (Basel, Switzerland), 9(12), 1263. https://doi.org/10.3390/antiox9121263 Cruz Guerrero, K. de la. (2018). Manejo agroecológico de plagas en el cultivo del pepino (Cucumis sativus L.) en condiciones de organopónico [Trabajo de titulación, Universidad de Holguín]. Davidson, D., & Gu, F. X. (2012). Materials for sustained and controlled release of nutrients and molecules to support plant growth. Journal of Agricultural and Food Chemistry, 60(4), 870–876. https://doi.org/10.1021/jf204092h Decker-Walters, D. S., Chung, S.-M., Staub, J. E., Quemada, H. D., & López-Sesé, A. I. (2002). The origin and genetic affinities of wild populations of melon (Cucumis melo, Cucurbitaceae) in North America. Plant Systematics and Evolution, 233(3), 183–197. https://doi.org/10.1007/s00606-002-0191-3 Demétrio, C., Hinde, J., & Moral, R. A. (2014). Models for overdispersed data in entomology. En C. P. Ferreira & W. Godoy (Eds.), Ecological modelling applied to entomology (pp. 219–259). Springer. Dhankhar, N., & Kumar, J. (2023). Impact of increasing pesticides and fertilizers on human health: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.766 Dzung, N. A., Khanh, V. T. P., & Dzung, T. T. (2011). Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers, 84(2), 751–755. https://doi.org/10.1016/j.carbpol.2010.07.066 El-Miniawy, S. M., Ragab, M. E., Youssef, S. M., & Metwally, A. A. (2013). Response of strawberry plants to foliar spraying of chitosan. Research Journal of Agriculture and Biological Sciences, 9(6), 366–372. https://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2013/366-372.pdf El-Morsy, E.-S. M., Elmalahy, Y. S., & Mousa, M. M. A. (2023). Biocontrol of Fusarium equiseti using chitosan nanoparticles combined with Trichoderma longibrachiatum and Penicillium polonicum. Fungal Biology and Biotechnology, 10(1). https://doi.org/10.1186/s40694-023-00151-4 Espinoza Ronquillo, S. I. (2022). Seguimiento y observación del crecimiento agronómico en el cultivo del pepino (Cucumis sativus L.) en el Ecuador [Trabajo de titulación, Universidad Técnica de Babahoyo]. Ferrão Castelo Branco Melo, N., de Mendonça Soares, B. L., Marques Diniz, K., Ferreira Leal, C., Canto, D., Pelagio Flores, M. A., da Costa Tavares-Filho, J. H., Galembeck, A., Montenegro Stamford, T. L., Montenegro Stamford-Arnaud, T., & Montenegro Stamford, T. C. (2018). Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biology and Technology, 139, 56–66. https://doi.org/10.1016/j.postharvbio.2018.01.014 Fouzia, H. B. (2019). Monitoring of marine pollution. BoD – Books on Demand. Fuentes Paz, E. S. (2015). Descripción de la dinámica de absorción nutrimental en el cultivo de pepino (Cucumis sativus L. híbrido Diomede), bajo condiciones de invernadero en el Centro Experimental Docente de la Facultad de Agronomía (CEDA), Guatemala, C.A. [Licenciatura thesis, Universidad de San Carlos de Guatemala]. Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology advances, 29(6), 792–803. https://doi.org/10.1016/j.biotechadv.2011.06.007 Gokul, A., Mabaso, J., Henema, N., Otomo, L., Bakare, O. O., Klein, A., Daniel, A. I., Omolola, A., Niekerk, L.-A., Nkomo, M., & Keyster, M. (2023). Sustainable agriculture through the enhancement of microbial biocontrol agents: Current challenges and new perspectives. Applied Sciences, 13(11), 6507. https://doi.org/10.3390/app13116507 González-Peña Fundora, D., Falcón-Rodríguez, A. B., Costales Menéndez, D., Foroud, N. A., Vaillant Flores, D., Aispuro-Hernández, E., & Martínez-Téllez, M. Á. (2022). Chitosan induces tomato basal resistance against Phytophthora nicotianae and inhibits pathogen development. Canadian Journal of Plant Pathology, 44(3), 400–414. https://doi.org/10.1080/07060661.2021.1998225 Grillo, R., Pereira, A. E. S., Nishisaka, C. S., de Lima, R., Oehlke, K., Greiner, R., & Fraceto, L. F. (2014). Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. Journal of Hazardous Materials, 278, 163–171. https://doi.org/10.1016/j.jhazmat.2014.05.079 Guan, H., Chi, D., Yu, J., & Li, X. (2008). A novel photodegradable insecticide: Preparation, characterization and properties evaluation of nano-imidacloprid. Pesticide Biochemistry and Physiology, 92(2), 83–91. https://doi.org/10.1016/j.pestbp.2008.06.008 Gumelar, M. D., Hamzah, M., Hidayat, A. S., Saputra, D. A., & Idvan. (2020). Utilization of chitosan as coating material in making NPK slow release fertilizer. Macromolecular Symposia, 391(1), 1900188. https://doi.org/10.1002/masy.201900188 Ha, N. M. C., Nguyen, T. H., Wang, S.-L., & Nguyen, A. D. (2019). Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in greenhouse. Research on Chemical Intermediates, 45(1), 51–63. https://doi.org/10.1007/s11164-018-3630-7 Hameed, A., Sheikh, M. A., Farooq, T., Basra, S., & Jamil, A. (2013). Chitosan priming enhances the seed germination, antioxidants, hydrolytic enzymes, soluble proteins and sugars in wheat seeds. Agrochimica, 57(2), 97–110. https://www.cabidigitallibrary.org/doi/full/10.5555/20133352106 Hammerbacher, A., Paetz, C., Wright, L. P., Fischer, T. C., Bohlmann, J., Davis, A. J., Fenning, T. M., Gershenzon, J., & Schmidt, A. (2014). Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica. Plant physiology, 164(4), 2107–2122. https://doi.org/10.1104/pp.113.232389 Hamzah, W. M., Cruz Reyes, I. G., & Mendoza Pérez, J. A. (2023). Nanotechnology for pest and microbiological control. En F. Fernandez-Luqueno & J. K. Patra (Eds.), Interdisciplinary biotechnological advances (pp. 393–409). Springer Nature. https://doi.org/10.1007/978-981-19-5454-2_14 Handford, C. E., Dean, M., Henchion, M., Spence, M., Elliott, C. T., & Campbell, K. (2014). Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends in Food Science & Technology, 40(2), 226–241. https://doi.org/10.1016/j.tifs.2014.09.007 Hano, C., & Tungmunnithum, D. (2020). Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases. Medicines (Basel, Switzerland), 7(5), 26. https://doi.org/10.3390/medicines7050026 Henriquez, C., Aliaga, C., & Lissi, E. (2002). Formation and decay of the ABTS derived radical cation: A comparison of different preparation procedures. International Journal of Chemical Kinetics, 34(12), 659–665. https://doi.org/10.1002/kin.10094 Hidangmayum, A., & Dwivedi, P. (2022). Chitosan based nanoformulation for sustainable agriculture with special reference to abiotic stress: A review. Journal of Polymers and the Environment, 30(4), 1264–1283. https://doi.org/10.1007/s10924-021-02296-y Hosseinnejad, M., & Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 85, 467–475. https://doi.org/10.1016/j.ijbiomac.2016.01.022 Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50(3), 346–363. https://doi.org/10.1002/bimj.200810425 Hussain, M. R., Devi, R. R., & Maji, T. K. (2012). Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iranian Polymer Journal, 21(8), 473–479. https://doi.org/10.1007/s13726-012-0051-0 Ingle, P. U., Shende, S. S., Shingote, P. R., Mishra, S. S., Sarda, V., Wasule, D. L., Rajput, V. D., Minkina, T., Rai, M., Sushkova, S., Mandzhieva, S., & Gade, A. (2022). Chitosan nanoparticles (ChNPs): A versatile growth promoter in modern agricultural production. Heliyon, 8(11), e11893. https://doi.org/10.1016/j.heliyon.2022.e11893 Jeffrey, C. (1980). A review of the Cucurbitaceae. Botanical Journal of the Linnean Society, 81(3), 233–247. https://doi.org/10.1111/j.1095-8339.1980.tb01676.x Katiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: A review. Indian Journal of Plant Physiology, 20(1), 1–9. https://doi.org/10.1007/s40502-015-0139-6 Ke, C.-L., Deng, F.-S., Chuang, C.-Y., & Lin, C.-H. (2021). Antimicrobial actions and applications of chitosan. Polymers, 13(6), 904. https://doi.org/10.3390/polym13060904 Khalaf, E. M., Abood, N. A., Atta, R. Z., Ramírez-Coronel, A. A., Alazragi, R., Parra, R. M. R., Abed, O. H., Abosaooda, M., Jalil, A. T., Mustafa, Y. F., Narmani, A., & Farhood, B. (2023). Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review. International Journal of Biological Macromolecules, 231, 123354. https://doi.org/10.1016/j.ijbiomac.2023.123354 Khalili, N., Oraei, M., Gohari, G., Panahirad, S., Nourafcan, H., & Hano, C. (2022). Chitosan-Enriched Salicylic Acid Nanoparticles Enhanced Anthocyanin Content in Grape (Vitis vinifera L. cv. Red Sultana) Berries. Polymers, 14(16), 3349. https://doi.org/10.3390/polym14163349 Korbecka-Glinka, G. K., Wiśniewska-Wrona, M., & Kopania, E. (2021). The use of natural polymers for treatments enhancing sowing material. Polimery, 66(1), 11–20. https://doi.org/10.14314/polimery.2021.1.2 Kubavat, D., Trivedi, K., Vaghela, P., Prasad, K., Vijay Anand, G. K., Trivedi, H., Patidar, R., Chaudhari, J., Andhariya, B., & Ghosh, A. (2020). Characterization of a chitosan-based sustained release nanofertilizer formulation used as a soil conditioner while simultaneously improving biomass production of Zea mays L. Land Degradation & Development, 31(17), 2734–2746. https://doi.org/10.1002/ldr.3629 Lao, S.-B., Zhang, Z.-X., Xu, H.-H., & Jiang, G.-B. (2010). Novel amphiphilic chitosan derivatives: Synthesis, characterization and micellar solubilization of rotenone. Carbohydrate Polymers, 82(4), 1136–1142. https://doi.org/10.1016/j.carbpol.2010.06.044 Limpanavech, P., Chaiyasuta, S., Vongpromek, R., Pichyangkura, R., Khunwasi, C., Chadchawan, S., & Bangyeekhun, T. (2008). Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Scientia Horticulturae, 116(1), 65–72. https://doi.org/10.1016/j.scienta.2007.10.034 Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H., & Chen, S. (2016). An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules (Basel, Switzerland), 21(10), 1374. https://doi.org/10.3390/molecules21101374 Lin, S., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., & Ke, P. C. (2009). Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small, 5(10), 1128–1132. https://doi.org/10.1002/smll.200801556 López Zamora, C. M. (2021). Guía técnica cultivo de pepino. Centro Nacional de Tecnología Agropecuaria y Forestal. https://www.centa.gob.sv/download/guia-tecnica-cultivo-de-pepino/# Lustriane, C., Dwivany, F. M., Suendo, V., & Reza, M. (2018). Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. Journal of Plant Biotechnology, 45(1), 36–44. https://doi.org/10.5010/JPB.2018.45.1.036 Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences, 17(7), 996. https://doi.org/10.3390/ijms17070996 Maluin, F. N., & Hussein, M. Z. (2020). Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules (Basel, Switzerland), 25(7), 1611. https://doi.org/10.3390/molecules25071611 Manikandan, A., & Sathiyabama, M. (2016). Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea. International Journal of Biological Macromolecules, 84, 58–61. https://doi.org/10.1016/j.ijbiomac.2015.11.083 Maroto Borrego, J. V. (2008). Elementos de horticultura general. Ediciones Mundi-Prensa. Matica, M. A., Aachmann, F. L., Tøndervik, A., Sletta, H., & Ostafe, V. (2019). Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. International Journal of Molecular Sciences, 20(23), 5889. https://doi.org/10.3390/ijms20235889 Mawale, K. S., & Giridhar, P. (2024). Chitosan nanoparticles modulate plant growth, and yield, as well as thrips infestation in Capsicum spp. International journal of biological macromolecules, 254(Pt 1), 127682. https://doi.org/10.1016/j.ijbiomac.2023.127682 McCreight, J. D., Nerson, H., & Grumet, R. (1993). Melon: Cucumis melo L. En G. Kalloo & B. O. Bergh (Eds.), Advances in fruit breeding (pp. 267–294). Meza Rodriguez, D. A. (2023). Requerimiento hídrico del pepino híbrido Diamante F1 y Marketmore 76 (Cucumis sativus L.) en condiciones de invernadero [Trabajo de titulación, Universidad La Molina]. Mishra, D., Chitara, M. K., Negi, S., Pal Singh, J., Kumar, R., & Chaturvedi, P. (2023). Biosynthesis of zinc oxide nanoparticles via leaf extracts of Catharanthus roseus (L.) G. Don and their application in improving seed germination potential and seedling vigor of Eleusine coracana (L.) Gaertn. Advances in Agriculture, 2023, e7412714. https://doi.org/10.1155/2023/7412714 Mohamed, N. G., & Abdel-Hakeem, M. A. (2023). Chitosan nanoparticles enhance drought tolerance in tomatoes (Solanum lycopersicum L) via gene expression modulation. Plant Gene, 34, 100406. https://doi.org/10.1016/j.plgene.2023.100406 Mondal, M. M., Malek, M. A., Puteh, A. B., Ismail, M. R., Ashrafuzzaman, M., & Naher, L. (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 6(5), 918–921. https://www.scirp.org/reference/referencespapers?referenceid=2738122 Moral, R. A., Hinde, J., & Demétrio, C. G. B. (2017). Half-normal plots and overdispersed models in R: The hnp package. Journal of Statistical Software, 81(10). https://doi.org/10.18637/jss.v081.i10 Morejón Díaz, D. M. (2022). Manejo ecológico de insectos chupadores en el cultivo de pepino (Cucumis sativus L.) [Trabajo de titulación, Universidad Técnica de Babahoyo]. Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters, 17(4), 1667–1692. https://doi.org/10.1007/s10311-019-00904-x Mouniga, R., Anita, B., Shanthi, A., Lakshmanan, A., & Karthikeyan, G. (2022). Phenol and antioxidant enzymatic activity in root knot nematode, Meloidogyne incognita infected tomato plants treated with chitosan nanoparticles. The Pharma Innovation Journal, 11(4), 241–245. https://doi.org/10.22271/tpi.2022.v11.i4d.11754 Mustafa, M. A., Ali, A., & Manickam, S. (2012). Application of a chitosan based nanoparticle formulation as an edible coating for tomatoes (Solanum lycopersicum L.). VII International Postharvest Symposium. Kuala, Malaysia. Naegele, R. P., & Wehner, T. C. (2017). Genetic resources of cucumber. En R. Grumet, N. Katzir y J. Garcia-Mas (Eds.), Plant Genetics and Genomics: Crops and Models (pp. 61–86). Springer International Publishing. Nguyen Van, S., Dinh Minh, H., & Nguyen Anh, D. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysis and Agricultural Biotechnology, 2(4), 289–294. https://doi.org/10.1016/j.bcab.2013.06.001 Noruzi, M., Hadian, P., Soleimanpour, L., Ma'mani, L., & Shahbazi, K. (2023). Hydroxyapatite nanoparticles: An alternative to conventional phosphorus fertilizers in acidic culture media. Chemical and Biological Technologies in Agriculture, 10(1), 71. https://doi.org/10.1186/s40538-023-00437-0 Nuez Viñals, F., Ruiz Martínez, J. J., & FAO. (1996). El pepino dulce y su cultivo. Food & Agriculture Organization. Okwuokenye, G. F. (2020). Farmers perception of farming cucumber in greenhouse for increased productivity in noun farms, Kaduna, Nigeria: An extension approach. International Journal of Agriculture and Rural Development, 23(2), 5265–5273. Oraei, M., Gohari, G., Panahirad, S., Zareei, E., & Zaare-Nahandi, F. (2019). Effect of salicylic acid foliar application on Vitis vinifera L. cv. 'Sultana' under salinity stress. Acta Scientiarum Polonorum Hortorum Cultus, 18(2), 159–169. https://doi.org/10.24326/asphc.2019.2.15 Palacio-Marquez, A., Ramirez-Estrada, C. A., Sanchez, E., Ojeda-Barrios, D. L., Chavez-Mendoza, C., & Sida-Arreola, J. P. (2022). Biofortification with nanoparticles and zinc nitrate plus chitosan in green beans: Effects on yield and mineral content. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(2), 12672. https://doi.org/10.15835/nbha50212672 Palma-Guerrero, J., Lopez-Jimenez, J. A., Pérez-Berná, A. J., Huang, I.-C., Jansson, H.-B., Salinas, J., Villalaín, J., Read, N. D., & Lopez-Llorca, L. V. (2010). Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology, 75(4), 1021–1032. https://doi.org/10.1111/j.1365-2958.2009.07039.x Panahirad, S., Naghshiband-Hassani, R., Bergin, S., Katam, R., & Mahna, N. (2020). Improvement of Postharvest Quality of Plum (Prunus domestica L.) Using Polysaccharide-Based Edible Coatings. Plants (Basel, Switzerland), 9(9), 1148. https://doi.org/10.3390/plants9091148 Parvin, M. A., Zakir, H. M., Sultana, N., Kafi, A., & Seal, H. P. (2019). Effects of different application methods of chitosan on growth, yield and quality of tomato (Lycopersicon esculentum Mill.). Archives of Agriculture and Environmental Science, 4(3), 261–267. https://doi.org/10.26832/24566632.2019.040301 Paula, H., Matoso Sombra, F., De Freitas Cavalcante, R., Abreu, F., & De Paula, R. (2011). Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Materials Science and Engineering: C, 31(2), 173–178. https://doi.org/10.1016/j.msec.2010.08.013 Perin Gomes, E., Vans Borges, C., Monteiro, G. C., Filiol Belin, M. A., Minatel, I. O., Pimentel Junior, A., & Pereira Lima, G. P. (2021). Preharvest salicylic acid treatments improve phenolic compounds and biogenic amines in 'Niagara Rosada' table grape. Postharvest Biology and Technology, 176, 111505. https://www.bohrium.com/paper-details/preharvest-salicylic-acid-treatments-improve-phenolic-compounds-and-biogenic-amines-in-niagara-rosada-table-grape/812497237685829632-1337 Peteu, S. F., Oancea, F., Sicuia, O. A., Constantinescu, F., & Dinu, S. (2010). Responsive polymers for crop protection. Polymers, 2(3), 229–251. https://doi.org/10.3390/polym2030229 Porras, M., Madrigal, S., & Vega-Baudrit, J. R. (2012). Síntesis de nanopartículas poliméricas de quitosano funcionalizadas con extractos de la mora (Rubus glaucus) y su evaluación preliminar como agentes antimicrobianos. Revista Científica de la Facultad de Ciencias Químicas y Farmacia, 22(1), 81–91. https://doi.org/10.54495/Rev.Cientifica.v22i1.126 Posmyk, M. M., & Szafrańska, K. (2016). Biostimulators: A new trend towards solving an old problem. Frontiers in Plant Science, 7. https://www.frontiersin.org/articles/10.3389/fpls.2016.00748 Prajapati, D., Pal, A., Dimkpa, C., Harish, Singh, U., Devi, K. A., Choudhary, J. L., & Saharan, V. (2022). Chitosan nanomaterials: A prelim of next-generation fertilizers; existing and future prospects. Carbohydrate polymers, 288, 119356. https://doi.org/10.1016/j.carbpol.2022.119356 Quiñones, J. P., García, Y. C., Curiel, H., & Covas, C. P. (2010). Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydrate Polymers, 80(3), 915–921. https://doi.org/10.1016/j.carbpol.2010.01.006 R Core Team. (2022). R: A language and environment for statistical computing [Computer software]. R Foundation for Statistical Computing. https://www.r-project.org/ Rahman, K. M. A., & Zhang, D. (2018). Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability, 10(3), 759. https://doi.org/10.3390/su10030759 Ramadan, M. E., El-Saber, M. M., Adelhamid, A. E., & El-Sayed, A. A. (2022). Effect of nano-chitosan encapsulated spermine on growth, productivity and bioactive compounds of chili pepper (Capsicum annuum L.) under salinity stress. Egyptian Journal of Chemistry, 65(8), 197–207. https://ejchem.journals.ekb.eg/article_211064.html Ramírez-Rodríguez, S. C., Ortega-Ortiz, H., González-Morales, S., & Preciado-Rangel, P. (2023). Chitosan nanoparticles improve yield, enzymatic activity, and bioactive compounds in tomato fruits. Terra Latinoamericana, 41. https://doi.org/10.28940/terra.v41i0.1686 Rebollar-Rebollar, S., Ramírez-Abarca, O., & Hernández-Martínez, J. (2022). Competitividad y valor agregado de pepino Persa (Cucumis sativus L.) en agricultura por contrato: Estudio de caso. Terra Latinoamericana, 40. https://doi.org/10.28940/terra.v40i0.952 Rempelos, L., Baranski, M., Wang, J., Adams, T. N., Adebusuyi, K., Beckman, J. J., … & Leifert, C. (2021). Integrated soil and crop management in organic agriculture: A logical framework to ensure food quality and human health? Agronomy, 11(12), 2494. https://doi.org/10.3390/agronomy11122494 Robinson, R. W., & Decker-Walters, D. S. (1997). Cucurbits. CAB International. Rouphael, Y., & Colla, G. (2020). Editorial: Biostimulants in agriculture. Frontiers in Plant Science, 11. https://www.frontiersin.org/articles/10.3389/fpls.2020.00040 Saad, A. M., Alabdali, A. Y. M., Ebaid, M., Salama, E., El-Saadony, M. T., Selim, S., Safhi, F. A., ALshamrani, S. M., Abdalla, H., Mahdi, A. H. A., & El-Saadony, F. M. A. (2022). Impact of Green Chitosan Nanoparticles Fabricated from Shrimp Processing Waste as a Source of Nano Nitrogen Fertilizers on the Yield Quantity and Quality of Wheat (Triticum aestivum L.) Cultivars. Molecules (Basel, Switzerland), 27(17), 5640. https://doi.org/10.3390/molecules27175640 Saavedra, G. M., Figueroa, N. E., Poblete, L. A., Cherian, S., & Figueroa, C. R. (2016). Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of Fragaria chiloensis fruit. Food Chemistry, 190, 448–453. https://doi.org/10.1016/j.foodchem.2015.05.107 Saberi Riseh, R., Vatankhah, M., Hassanisaadi, M., & Kennedy, J. F. (2023). Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural products: A review. Carbohydrate Polymers, 309, 120666. https://doi.org/10.1016/j.carbpol.2023.120666 Saharan, V., & Pal, A. (2016). Chitosan based nanomaterials in plant growth and protection. En M. Dervash, A. Yousuf, P. Sandhu y M. Ozturk. Ecological and Bioprospecting Perspectives. (pp. 33–41). Springer. Saharan, V., Kumaraswamy, R. V., Choudhary, R. C., Kumari, S., Pal, A., Raliya, R., & Biswas, P. (2016). Cu-Chitosan Nanoparticle Mediated Sustainable Approach To Enhance Seedling Growth in Maize by Mobilizing Reserved Food. Journal of agricultural and food chemistry, 64(31), 6148–6155. https://doi.org/10.1021/acs.jafc.6b02239 Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., Raliya, R., & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346–353. https://doi.org/10.1016/j.ijbiomac.2015.01.027 Sangwan, S., Sharma, P., Wati, L., & Mehta, S. (2023). Chapter 4 - Effect of chitosan nanoparticles on growth and physiology of crop plants. En A. Husen (Ed.), Plant biology, sustainability and climate change (pp. 99–123). Academic Press. Santos, V., Marques, N., Maia, P., Lima, M., Franco, L., & Campos-Takaki, G. M. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences, 21(12), 4290. https://doi.org/10.3390/ijms21124290 Sargın, İ., Arslan, G., & Kaya, M. (2016). Microfungal spores (Ustilago maydis and U. digitariae) immobilised chitosan microcapsules for heavy metal removal. Carbohydrate Polymers, 138, 201–209. https://doi.org/10.1016/j.carbpol.2015.11.065 Sargın, İ., Kaya, M., Arslan, G., Baran, T., & Ceter, T. (2015). Preparation and characterisation of biodegradable pollen–chitosan microcapsules and its application in heavy metal removal. Bioresource Technology, 177, 1–7. https://doi.org/10.1016/j.biortech.2014.11.067 Sathiyabama, M., & Charles, R. E. (2015). Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici. Carbohydrate Polymers, 133, 400–407. https://doi.org/10.1016/j.carbpol.2015.07.066 Sathiyabama, M., & Parthasarathy, R. (2016). Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydrate polymers, 151, 321–325. https://doi.org/10.1016/j.carbpol.2016.05.033 Sathiyabama, M., Akila, G., & Charles, R. E. (2014). Chitosan-induced defence responses in tomato plants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Archives of Phytopathology and Plant Protection, 47(16), 1963–1973. https://doi.org/10.1080/03235408.2013.863497 Sebastian, P., Schaefer, H., Telford, I., & Renner, S. (2010). Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proceedings of the National Academy of Sciences, 107(32), 14269–14273. https://doi.org/10.1073/pnas.1005338107 Shahid, A., Faizan, M., & Raza, M. A. (2023). Potential role of silver nanoparticles (AgNPs) and zinc nanoparticles (ZnNPs) for plant disease management. Agrobiological Records, 14, 59–69. https://doi.org/10.47278/journal.abr/2023.039 Sharif, S., Abbas, G., Hanif, M., Bernkop-Schnürch, A., Jalil, A., & Yaqoob, M. (2019). Mucoadhesive micro-composites: Chitosan coated halloysite nanotubes for sustained drug delivery. Colloids and Surfaces B: Biointerfaces, 184, 110527. https://doi.org/10.1016/j.colsurfb.2019.110527 Sharma, V., Sharma, L., & Sandhu, K. S. (2020). Cucumber (Cucumis sativus L.). En G. A. Nayik & A. Gull (Eds.), Plant biotechnology and its applications (pp. 333–340). Springer. Singh, R. K., Ruiz-May, E., Rajput, V. D., Minkina, T., Gómez-Peraza, R. L., Verma, K. K., Shekhawat, M. S., Pinto, C., Falco, V., & Quiroz-Figueroa, F. R. (2022). Viewpoint of chitosan application in grapevine for abiotic stress/disease management towards more resilient viticulture practices. Agriculture, 12(9), 1369. https://doi.org/10.3390/agriculture12091369 Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1 Siskani, A., Seghatoleslami, M., & Moosavi, G. (2015). Effect of deficit irrigation and nano fertilizers on yield and some morphological traits of cotton. Biological Forum, 7(1), 1710–1715. https://www.researchtrend.net/bfij/bf12/270%20MOHAMMADJAVAD%20SEGHATOLESLAMI.pdf Sokal, R. R., & Rohlf, F. J. (2012). Biometry: The principles and practice of statistics in biological research. W. H. Freeman. Solano Porras, R. C., Artola, A., Barrena, R., Ghoreishi, G., Ballardo Matos, C., & Sánchez, A. (2023). Breaking new ground: Exploring the promising role of solid-state fermentation in harnessing natural biostimulants for sustainable agriculture. Processes, 11(8), 2300. https://doi.org/10.3390/pr11082300 Stasińska-Jakubas, M., & Hawrylak-Nowak, B. (2022). Protective, biostimulating, and eliciting effects of chitosan and its derivatives on crop plants. Molecules, 27(9), 2801. https://doi.org/10.3390/molecules27092801 Staub, J. E., Serquen, F. C., Horejsi, T., & Chen, J. (1999). Genetic diversity in cucumber (Cucumis sativus L.): IV. An evaluation of Chinese germplasm. Genetic Resources and Crop Evolution, 46(3), 297–310. https://doi.org/10.1023/A:1008663225896 Sun, B., Zhang, L., Yang, L., Zhang, F., Norse, D., & Zhu, Z. (2012). Agricultural non-point source pollution in China: Causes and mitigation measures. AMBIO, 41(4), 370–379. https://doi.org/10.1007/s13280-012-0249-6 Sun, W., Shahrajabian, M. H., Petropoulos, S. A., & Shahrajabian, N. (2023). Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants, 12(13), 2469. https://doi.org/10.3390/plants12132469 Swamy, K. (2017). Origin, distribution and systematics of culinary cucumber (Cucumis melo subsp. agrestis var. conomon). Journal of Horticultural Sciences, 12(1), 1–22. https://doi.org/10.24154/jhs.v12i1.64 Tao, S., Pang, R., Chen, C., Ren, X., & Hu, S. (2012). Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydrate Polymers, 88(4), 1189–1194. https://doi.org/10.1016/j.carbpol.2012.01.076 Tarakanov, R., Shagdarova, B., Lyalina, T., Zhuikova, Y., Il'ina, A., Dzhalilov, F., & Varlamov, V. (2023). Protective properties of copper-loaded chitosan nanoparticles against soybean pathogens Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens. Polymers, 15(5), 1100. https://doi.org/10.3390/polym15051100 Taşkın, P., Canısağ, H., & Şen, M. (2014). The effect of degree of deacetylation on the radiation induced degradation of chitosan. Radiation Physics and Chemistry, 94, 236–239. https://doi.org/10.1016/j.radphyschem.2013.04.007 Tolaimate, A., Desbrieres, J., Rhazi, M., & Alagui, A. (2003). Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer, 44(26), 7939–7952. https://doi.org/10.1016/j.polymer.2003.10.025 Torres-Rodriguez, J. A., Reyes-Pérez, J. J., Castellanos, T., Angulo, C., Quiñones-Aguilar, E. E., & Hernandez-Montiel, L. G. (2021). A biopolymer with antimicrobial properties and plant resistance inducer against phytopathogens: Chitosan. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12231. https://doi.org/10.15835/nbha49112231 Torres-Rodriguez, J. A., Reyes-Pérez, J. J., Quiñones-Aguilar, E. E., & Hernandez-Montiel, L. G. (2022). Actinomycete potential as biocontrol agent of phytopathogenic fungi: Mechanisms, source, and applications. Plants, 11(23), 3201. https://doi.org/10.3390/plants11233201 Van, S. N., Minh, H. D., & Anh, D. N. (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house. Biocatalysis and Agricultural Biotechnology, 2(4), 289–294. https://linkinghub.elsevier.com/retrieve/pii/S1878818113000649 Varlamov, V. P., & Mysyakina, I. S. (2018). Chitosan in biology, microbiology, medicine, and agriculture. Microbiology, 87(5), 712–715. https://doi.org/10.1134/S0026261718050168 Vemula, M., & Reddy, A. V. B. (2023). Polymeric nanoparticles as effective delivery systems in agriculture sustainability. Nanotechnology for Environmental Engineering, 8(3), 805–814. https://doi.org/10.1007/s41204-023-00319-8 Wang, M., Chen, Y., Zhang, R., Wang, W., Zhao, X., Du, Y., & Yin, H. (2015). Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars (Triticum aestivum L.) in Northwest China. Field Crops Research, 172, 11–20. https://doi.org/10.1016/j.fcr.2014.12.007 Wen, Y., Chen, H., Yuan, Y., & Xu, D., & Kang, X. (2011). Enantioselective ecotoxicity of the herbicide dichlorprop and complexes formed with chitosan in two fresh water green algae. Journal of Environmental Monitoring, 13(4), 879–885. https://doi.org/10.1039/C0EM00593B Wonde, K. M., Tsehay, A. S., & Lemma, S. E. (2023). The impact of training on the application of modern agricultural inputs: Evidence from wheat and maize growers in Northwest Ethiopia. International Journal of Training Research, 21, 1–23. https://doi.org/10.1080/14480220.2023.2212886 Wu, L., Liu, M., & Rui Liang. (2008). Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresource Technology, 99(3), 547–554. https://doi.org/10.1016/j.biortech.2006.12.027 Xing, K., Shen, X., Zhu, X., Ju, X., Miao, X., Tian, J., Feng, Z., Peng, X., Jiang, J., & Qin, S. (2016). Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. International Journal of Biological Macromolecules, 82, 830–836. https://doi.org/10.1016/j.ijbiomac.2015.09.074 Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources: Structure, properties and applications. Marine Drugs, 13(3), 1133–1174. https://doi.org/10.3390/md13031133 Zahoor, I., & Mushtaq, A. (2023) Water Pollution from Agricultural Activities: A Critical Global Review. International Journal of Chemical and Biochemical Sciences, 23, 164-176. https://www.scirp.org/reference/referencespapers?referenceid=3919518 Zaldivar, I., & Cornejo, R. (2011). Laboratorio de alimentos I. Procedimiento. Universidad Nacional Autónoma de México. http://depa.fquim.unam.mx/amyd/archivero/PROCEDIMIENTOS13-20566.pdf Zeng, D., Luo, X., & Tu, R. (2012). Application of bioactive coatings based on chitosan for soybean seed protection. International Journal of Carbohydrate Chemistry, 2012, 1–5. https://doi.org/10.1155/2012/104565 Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2 Zhou, X.-Q., Hayat, Z., Zhang, D.-D., Li, M.-Y., Hu, S., Wu, Q., Cao, Y.-F., & Yuan, Y. (2023). Zinc oxide nanoparticles: Synthesis, characterization, modification, and applications in food and agriculture. Processes, 11(4), 1193. https://doi.org/10.3390/pr11041193 Zohara, F., Surovy, M. Z., Khatun, A., Prince, F. R. K., Ankada, A. M., Rahman, M., & Islam, T. (2019). Chitosan biostimulant controls infection of cucumber by Phytophthora capsici through suppression of asexual reproduction of the pathogen. Acta Agrobotanica, 72(1). https://pbsociety.org.pl/journals/index.php/aa/article/view/aa.1763/0 Zou, P., Yang, X., Wang, J., Li, Y., Yu, H., Zhang, Y., & Liu, G. (2016). Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chemistry, 190, 1174–1181. https://doi.org/10.1016/j.foodchem.2015.06.076