Local Obstructions and Baker-Type Gap Bounds for the Beal Equation
Creators
Contributors
Research group:
Description
This work presents a reproducible framework for studying primitive solutions to Beal’s equation Ax+By=CzA^x+B^y=C^zAx+By=Cz with gcd(A,B,C)=1\gcd(A,B,C)=1gcd(A,B,C)=1 and x,y,z>2x,y,z>2x,y,z>2. Locally, the method organizes standard congruence information—2-adic valuations, odd-prime lifting-the-exponent (LTE) facts, and small power-residue images—into branch data. Via the Chinese Remainder Theorem, each branch yields a finite modulus ttt and residue set RRR such that any putative solution must satisfy Cz mod t∈RC^z \bmod t \in RCzmodt∈R. A worked example illustrates how common parity/divisibility patterns lead to t=24t=24t=24 with R={0}R=\{0\}R={0}.
Globally, the paper writes Cz=L+UC^z=L+UCz=L+U with L=max{Ax,By}L=\max\{A^x,B^y\}L=max{Ax,By} and applies explicit two-logarithm lower bounds (Baker/Matveev-type) to obtain a universal lower bound on the relative gap U/LU/LU/L in terms of logH\log HlogH (height H=max{∣A∣,∣B∣,∣C∣}H=\max\{|A|,|B|,|C|\}H=max{∣A∣,∣B∣,∣C∣}) and the largest exponent M=max{x,y,z}M=\max\{x,y,z\}M=max{x,y,z}. A key implication is conditional: if an exponential upper bound on the gap is established (e.g., U/L≤e−cMU/L\le e^{-cM}U/L≤e−cM), then one obtains a polylogarithmic cap M≪(logH)4M \ll (\log H)^4M≪(logH)4. The note does not resolve Beal’s conjecture; rather, it packages the local sieve and global gap calculus into a clear, testable toolkit with verification scripts/tables and fixed random seeds.
Files
BEALS_COMPLETE.pdf
Files
(287.7 kB)
Name | Size | Download all |
---|---|---|
md5:200433a1fb5f7b4d88d3a6f9f6dbd310
|
287.7 kB | Preview Download |
Additional details
Dates
- Submitted
-
2025-09-21
References
- 1] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Math. 64 (2000), no. 6, 1217–1269. [2] F. Gouillon, Minorations explicites de formes lin´eaires de logarithmes de nombres rationnels, J. Th´eor. Nombres Bordeaux 18 (2006), 125–146. [3] Y. Bugeaud and K. Gy˝ory, Unit Equations in Diophantine Number Theory, Cambridge Studies in Advanced Mathematics, Cambridge Univ. Press, 2016. 7 [4] C. L. Stewart and R. Tijdeman, Diophantine Equations and Linear Forms in Logarithms, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 1, 147–173. [5] G. H. Hardy and E. M.