Relational Coexistence Theory (TCR): Quantum and Cosmological foundations.
Description
This work presents a theoretical framework in physics, deposited as a preprint to establish priority and ensure open access.
The "Teoria della Coesistenza Relazionale" (TCR, Relational Coexistence Theory) proposes an ontological model in which spacetime (R) is not the fundamental level of reality, but rather the emergent manifestation of an original relational domain (R′).
Within this framework, Quantum Mechanics and General Relativity are addressed simultaneously, suggesting unified explanations for phenomena usually treated separately, such as interference, entanglement, decoherence, cosmic expansion, and the arrow of time.
The strength of TCR lies not in mathematical complexity but in the parsimony of its ontological foundation. From R′, multidisciplinary consequences naturally emerge, linking microscopic and cosmological scales.
The theory is presented as an open research program: it offers preliminary experimental predictions, leaves room for mathematical development, and provides a unified reinterpretation of several well-known paradoxes of modern physics.
Files
TCR4.pdf
Files
(641.7 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:fd8c08943bf762a062a3092494041d94
|
641.7 kB | Preview Download |
Additional details
Related works
- Is supplement to
- Preprint: 10.5281/zenodo.17093992 (DOI)
References
- Albert Einstein. Die grundlage der allgemeinen relativitätstheorie. Annalen der Physik, 354(7):769–822, 1916.
- Albert Einstein. Die feldgleichungen der gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, pages 844–847, 1915.
- Werner Heisenberg. Über quantentheoretische umdeutung kinematischer und mechanischer beziehungen. Zeitschrift für Physik, 33:879–893, 1925.
- Erwin Schrödinger. Quantisierung als eigenwertproblem. Annalen der Physik, 384(4):361–376, 1926.
- Paul A. M. Dirac. The quantum theory of the electron. Proceedings of the Royal Society A, 117(778):610–624, 1928.
- Alan H. Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2):347–356, 1981.
- Alexei A. Starobinsky. A new type of isotropic cosmological models without singularity. Physics Letters B, 91(1):99–102, 1980.
- Andrei D. Linde. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B, 108(6):389–393, 1982.
- Andrei D. Linde. Chaotic inflation. Physics Letters B, 129(3-4):177–181, 1983.
- John S. Bell. On the einstein podolsky rosen paradox. Physics, 1(3):195–200, 1964.
- Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of bell's inequalities using time-varying analyzers. Physical Review Letters, 49(25):1804–1807, 1982.
- B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526:682–686, 2015.
- Marissa Giustina, Marijn A. M. Versteegh, Sören Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Kofler, Jan Åke Larsson, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Morgan W. Mitchell, Jörn Beyer, Thomas Gerrits, Adriana E. Lita, Lynden K. Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, and Anton Zeilinger. Significant-loophole-free test of bell's theorem with entangled photons. Physical Review Letters, 115(25):250401, 2015.
- Anton Zeilinger, Alain Aspect, and John F. Clauser. The nobel prize in physics 2022– scientific background. Royal Swedish Academy of Sciences, 2022.
- Niels Bohr. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 48:696–702, 1935.
- Werner Heisenberg. Physics and Philosophy: The Revolution in Modern Science. Harper, New York, 1958.
- David Bohm. A suggested interpretation of the quantum theory in terms of "hidden" variables. i. Physical Review, 85:166–179, 1952.
- Peter R. Holland. The Quantum Theory of Motion: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics. Cambridge University Press, 1993
- Louis de Broglie. La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. In Journal de Physique et le Radium, volume 8, pages 225–241, 1927.
- Hugh Everett III. Relative State Formulation of Quantum Mechanics. PhD thesis, Princeton University, 1957.
- David Wallace. The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford University Press, 2012.
- Gerard 't Hooft. Dimensional reduction in quantum gravity. arXiv preprint gr-qc/9310026, 1993.
- Leonard Susskind. The world as a hologram. Journal of Mathematical Physics, 36(11):6377–6396, 1995.
- Luca Bombelli, Joohan Lee, David Meyer, and Rafael D. Sorkin. Space-time as a causal set. Physical Review Letters, 59:521–524, 1987.
- Fotini Markopoulou. Quantum causal histories. In Classical and Quantum Gravity, volume 17, pages 2059–2072, 2000.
- Carlo Rovelli. Quantum Gravity. Cambridge University Press, 2004.
- Lee Smolin. The Trouble with Physics. Houghton Mifflin, Boston, 2006.
- Georges Lemaître. Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles, 47:49–59, 1927.
- Edwin Hubble. A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences, 15(3):168–173, 1929
- Jérôme Martin. The theory of inflation. Comptes Rendus Physique, 19(6):385–427, 2018.
- Ana Achúcarro et al. Inflation: Theory and observations. arXiv preprint, 2022.
- Roger Penrose. The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape, London, 2004.
- Julian Barbour, Tim Koslowski, and Flavio Mercati. Identification of a gravitational arrow of time. Physical Review Letters, 113(18):181101, 2014.
- Maximilian Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76:1267–1305, 2005.
- udwig Boltzmann. Über die beziehung zwischen dem zweiten hauptsatze der mechanischen wärmetheorie und der wahrscheinlichkeitsrechnung. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, 76:373–435, 1877. Classical formulation of entropy as S = kB lnW.
- Josiah Willard Gibbs. Elementary Principles in Statistical Mechanics. Charles Scribner's Sons, New York, 1902.
- John von Neumann. Wahrscheinlichkeitstheoretischer aufbau der quantenmechanik. Göttinger Nachrichten, pages 245–272, 1927
- Leon N. Cooper. Bound electron pairs in a degenerate fermi gas. Physical Review, 104(4):1189–1190, 1956.
- John Bardeen, Leon N. Cooper, and John R. Schrieffer. Theory of superconductivity. Physical Review, 108(5):1175–1204, 1957.
- John Bardeen, Leon N. Cooper, and J. Robert Schrieffer. Microscopic theory of superconductivity. Physical Review, 106(1):162–164, 1957.
- V. L. Ginzburg and L. D. Landau. On the theory of superconductivity. In On Superconductivity and Superfluidity, pages 113–137. Springer, Berlin, Heidelberg, 2009.
- Stephen W. Hawking. Particle creation by black holes. Communications in Mathematical Physics, 43:199–220, 1975.
- Richard P. Feynman. QED: The Strange Theory of Light and Matter. Princeton University Press, 1965.
- Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of bell's inequalities using time-varying analyzers. Physical Review Letters, 49(25):1804–1807, 1982.
- B. Hensen et al. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526:682–686, 2015.
- Marissa Giustina et al. Significant-loophole-free test of bell's theorem with entangled photons. Physical Review Letters, 115(25):250401, 2015.
- Anton Zeilinger, Alain Aspect, and John F. Clauser. The nobel prize in physics 2022– scientific background.
- Wojciech H. Zurek. Decoherence and the transition from quantum to classical. Physics Today, 44(10):36–44, 1991.
- S. Haroche and J. M. Raimond. Exploring the Quantum: Atoms, Cavities, and Photons. Oxford University Press, 2006.
- Akira Tonomura. Demonstration of single-electron buildup of an interference pattern. American Journal of Physics, 57(2):117–120, 1989.
- Huw Price. Time's Arrow and Archimedes' Point: New Directions for the Physics of Time. Oxford University Press, 1996.
- G. Mazzarella, L. Salasnich, A. Parola, and L. Reatto. Coherence and entanglement in the ground state of a bosonic josephson junction: From macroscopic schrödinger cat states to separable fock states. Physical Review A, 83(5):053607, 2011.
- S. Bhattacharya, R. Ghosh, and G. S. Agarwal. Quantum dynamics in a global thermal environment: Temperature dependence of decoherence and recoherence. Physical Review A, 94(1):012104, 2016.
- A.N.JordanandM.Büttiker. Entanglement energetics in the ground state. Physical Review Letters, 92(24):247901, 2004.
- A. Freyn, M. Flöser, B. Douçot, and R. Mélin. Production of nonlocal quartets and phase-sensitive entanglement in a superconducting beam splitter. Physical Review Letters, 106(25):257005, 2011.
- K. Micadei, J. P. S. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, T. B. Batalhão, R. M. Serra, and E. Lutz. Reversing the direction of heat flow using quantum correlations. Nature Communications, 10(1):2456, 2019.
- J. Klatzow, J. N. Becker, P. M. Ledingham, C. Weinzetl, K. T. Kaczmarek, D. J. Saunders, J. Nunn, I. A. Walmsley, R. Uzdin, and E. Poem. Experimental demonstration of quantum effects in the operation of microscopic heat engines. Physical Review Letters, 122(11):110601, 2019.
- D. Onishchenko, A. Dzhioev, and D. S. Kosov. Quantum friction and decoherence in open quantum systems. Physical Review A, 109(1):012202, 2024.
- P. Kondra et al. Reversible quantum entanglement enabled by quantum batteries. Nature Physics, 2025. in press.
- Pratika Dayal. Exploring a primordial solution for early black holes detected with the jwst. arXiv preprint arXiv:2407.07162, 2024.
- J. Colin et al. Evidence for anisotropy of cosmic acceleration. Astronomy & Astrophysics, 631:L13, 2019.
- P. M. Sutter et al. A public void catalog from the sdss dr10 galaxy surveys. Monthly Notices of the Royal Astronomical Society, 442(1):462–477, 2014.
- S. Nadathur et al. The sloan digital sky survey dr12 void catalogue. Monthly Notices of the Royal Astronomical Society, 482(2):2459–2471, 2019.
- Michel H. Devoret and Robert J. Schoelkopf. Superconducting circuits for quantum information: An outlook. Science, 339(6124):1169–1174, 2013.
- John Ellis and David Wands. Inflation (2023). arXiv preprint, 2023.
- Renata Kallosh and Andrei Linde. On the present status of inflationary cosmology. arXiv preprint, 2025.
- Pietro Curatola. Low-redshift bao without dark components: testing the tcr-cosmo model, 2025. Preprint.
- Markus Arndt, Olaf Nairz, Joachim Vos-Andreae, Claudia Keller, Gerbrand van der Zouw, and Anton Zeilinger. Wave–particle duality of c60 molecules. Nature, 401:680–682, 1999.
- Sandra Eibenberger, Stefan Gerlich, Markus Arndt, Marcel Mayor, and Jörg Tüxen. Matter-wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. Physical Chemistry Chemical Physics, 15(35):14696–14700, 2013.
- Yaakov Y. Fein, Patrick Geyer, Philipp Zwick, Fabian Kiałka, Stefano Pedalino, Marcel Mayor, Stefan Gerlich, and Markus Arndt. Quantum superposition of molecules beyond 25 kda. Nature Physics, 15:1242–1245, 2019.