Electrostatics with a Finite-Range Nonlocal Polarization Kernel: Closed-Form Potential, Force-Law Deviations, Physical Motivation, and Experimental Context
Creators
Description
We analyze a minimal, static, nonlocal modification of vacuum electrodynamics in which
the electric displacement D(r) depends on the electric field E(r) via an isotropic, finiterange
spatial susceptibility χ(|r − r′|). In electrostatics and for a point charge, the
modified Gauss law reduces in Fourier space to V (k) = ρ(k)/[k2(ε0 + χ(k))]. Choosing
χ(k) = χ0/(1 + k2ℓ2) produces a closed-form real-space potential with quadratic shortdistance
recovery and finite-range crossover. We demonstrate the effective field theory
origin through integrating out a gapped polarization mediator, derive the complete realspace
kernel, provide step-by-step algebraic derivations, and develop a dynamical extension
consistent with causality and passivity. We outline robust experimental observables for
AFM/MEMS precision force metrology and provide practical suggestions for dataset
reanalysis.
Files
Updated Electrostatic - publication.pdf
Files
(303.8 kB)
Name | Size | Download all |
---|---|---|
md5:a8c4ab25bb76c17dc83b9da21463e818
|
303.8 kB | Preview Download |
Additional details
References
- G. W. Plimpton and R. V. Lawton, "A Very Accurate Test of Coulomb's Law," Phys. Rev. 50, 1066 (1936). [2] E. R. Williams, J. E. Faller, and H. A. Hill, "New Experimental Test of Coulomb's Law: A Limit on the Photon Rest Mass," Phys. Rev. Lett. 26, 721 (1971). [3] S. K. Lamoreaux, "Demonstration of the Casimir force in the 0.6 to 6 m range," Phys. Rev. Lett. 78, 5 (1997). [4] R. S. Decca et al., "Precision Tests of the Casimir Force and Constraints on New Physics," Phys. Rev. Lett. 94, 240401 (2005). [5] A. O. Sushkov et al., "Observation of the thermal Casimir force," Phys. Rev. Lett. 107, 171101 (2011). [6] C. C. Speake and C. Trenkel, "Forces between Conducting Surfaces due to Spatial Variations of Surface Potential," Phys. Rev. Lett. 90, 160403 (2003). E. G. Adelberger et al., "Tests of the gravitational inverse-square law," Annu. Rev. Nucl. Part. Sci. 53, 77 (2003). [8] D. J. Kapner et al., "Tests of the gravitational inverse-square law below the dark-energy length scale," Phys. Rev. Lett. 98, 021101 (2007). [9] I. Antoniadis, "A possible new dimension at a few TeV," Phys. Lett. B 246, 377 (1990). [10] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, "The hierarchy problem and new dimensions at a millimeter," Phys. Lett. B 429, 263 (1998). [11] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999). [12] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984). [13] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999). [14] W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, New York, 1995). [15] C. T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed. (IEEE Press, New York, 1994). [16] R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE Press, New York, 1991). [17] J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, 2008). [18] C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. (Wiley, New York, 2012). [19] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE Press, New York, 1994). [20] A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978). [21] J. A. Stratton, Electromagnetic Theory (Wiley-IEEE Press, New York, 2007). [22] R. F. Harrington, Time-Harmonic Electromagnetic Fields (Wiley-IEEE Press, New York, 2001). [23] G. T. Ruck et al., Radar Cross Section Handbook (Plenum Press, New York, 1970). [24] L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves (Wiley, New York, 2000). [25] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic Press, New York, 2007).