Published September 8, 2025 | Version 1.0
Software Open

Automatic Outlier Detection in Organ at Risk and Target Delineation: A Modality-Independent Approach for Fast Quality Assurance

  • 1. ROR icon University of Southern Denmark
  • 2. ROR icon Odense University Hospital

Contributors

  • 1. ROR icon Odense University Hospital
  • 2. ROR icon University of Southern Denmark

Description

Background and Purpose

With the growing availability of AI delineation tools for regions of interest (ROI) (i.e. organ at risk and target delineation), clinical implementations are becoming more common. While these tools have shown reductions in delineation time and increased delineation consistency, they are still lacking reliable error detection. In this study, we developed an outlier detection tool (ODT) and assessed its performance.

 

Materials and Methods

The ODT characterises ROIs by their geometric properties, relative positions and islands and creates a reference model based on principal component analysis (see Fig.1). For each ROI, the tool returns a value between 0 and 1, with values close to 0 indicating an outlier. A prostate cancer dataset consisting of 25 manually delineated clinical scans from 25 patients was used for training, and 1288 AI-delineated scans from 116 patients were used to evaluate the performance.

 

Results

The tool took on average 6.5 seconds to analyse individual ROIs. We identified 138 cases with a value below 1x10e-9. The majority of identified outliers resulted from bad AI delineations of the femoral heads in cases with hip prosthetics. The tool also found severe outliers where parts of the target were delineated as bowel and bladder.

Conclusion
The tool is able to identify outliers in AI delineations and offers the possibility to investigate the frequency of errors in AI-based delineations in the future. The tool will be available as open-source.

Files

GUI_detail.png

Files (10.1 MB)

Name Size Download all
md5:9620336b3ece1f587ce67fb16ec66b35
6.6 kB Download
md5:5c6dc5bc036e949b70782e585a2631a6
240 Bytes Download
md5:7bb219eb96fd5a4f16258f8d5ce2f8cf
3.5 kB Download
md5:a4ff569520a5951f6ca9a361ce6b2299
1.2 kB Download
md5:f5e58716e05461857463ead68d1defc8
13.0 kB Download
md5:5363e29c90335889d1fc9d94e89e533f
2.9 kB Download
md5:9f0d186d6f5cf4bbfd97bd9ed27e921f
9.6 kB Download
md5:ef663a45bf56aa52e8d763ccad5e3853
233 Bytes Download
md5:bf67469e40170bb729df21166c3469e8
9.4 kB Download
md5:64a886fa5f5b270e9168cdc0d1433ea7
10.9 kB Download
md5:3c8d88499634e942779b6042b3bf8456
3.9 kB Download
md5:9581985c0c76d550ae30197c094a9023
9.7 kB Download
md5:7ba9cc7a05ba21ea43634044f717c79b
11.0 kB Download
md5:4ae78247b95e98335d9a78ef27b0ed0a
9.6 kB Download
md5:269d9ac5ebac92ca3e1ef33e22fe0e22
10.3 kB Download
md5:4ccd1ee168d1e5739d4663575a129bf4
4.3 kB Download
md5:a50099e8e9929238d4bd54b9ba5c688e
17.9 kB Download
md5:9a10c9f6cfa26c27562e96c5adefd3d5
9.1 kB Download
md5:dc64728b8ba619b3052e26fa9167860c
19.1 kB Download
md5:a257ebc0e33a4cbb6823dc4d4660d23a
3.6 kB Download
md5:cede6d067cace5593872da7728f2b68e
1.3 kB Download
md5:5617c43a514d9500960be883f83ea1a2
8.4 kB Download
md5:0bc6ff6a7aa06ef2b3b16d1698c64e23
23.2 kB Download
md5:2b5de99a6a09589f2ea50c6533c4a66b
4.4 kB Download
md5:a4a35b01383f7b7da4a72f21db219136
644 Bytes Download
md5:14272ff92ff3aa71497035f819c8c2dd
1.5 kB Download
md5:92ef7bc3f96eb09d351af3bc53e8c10d
1.2 kB Download
md5:5eb12670c0cbe05f38b24dae53470ba0
10.1 kB Download
md5:63d9157b40cf61511ff8bf1818c7b80e
2.4 MB Preview Download
md5:3b45fe29378cfafe3e62cd80d88c6176
210.7 kB Download
md5:8d532f3eb3960e80511242de56f982e5
5.6 kB Download
md5:8d40c6ca8e991835b894ec14dc5388ac
25.5 kB Preview Download
md5:bfb12f1c0f67ef39c9f657c46f74fdd8
23.6 kB Download
md5:4fd24f6e599c74455bc9fdf1353ba6dc
90 Bytes Download
md5:2c2ddfd4f5bf246004f4f55efb752f48
61.9 kB Download
md5:1c5f79ea1388bb20f1e2811e7c92e9d0
285.7 kB Preview Download
md5:06855aa91f3b314f42edb111afc8fe4d
35.2 kB Download
md5:912063c4d832e9c2997bdeb6c30eaf18
266.9 kB Preview Download
md5:0bdae8dd6eb5e522eac0f9c656973b74
80.6 kB Preview Download
md5:705fb25533394abc81d7cc1e82680184
88.7 kB Preview Download
md5:fa96b265d18bf4a6f3a9cf9f1e111fa6
1.3 kB Download
md5:a1fe3dee63616e106cc0d2c8a17f2343
5.4 kB Download
md5:56c6f3e3b897c8471ef7516318859cb4
6.3 MB Download
md5:43cc85c0460c698ca1cb3c10dd177be5
3.9 kB Download
md5:8ebc157d916b7fb51b484de9f530608b
13.8 kB Preview Download
md5:8ef587c64f01750297537dbc3791d7f4
1.9 kB Download
md5:c351284d23e0b0130203b54686c9abeb
2.6 kB Download
md5:94689d7e5e7421ff68dc84cd634319b2
2.9 kB Download
md5:48bee0d86076715b57e992fb17b273a2
1.7 kB Download
md5:bc1e4ce1c1e1db30a099272787ff968b
2.5 kB Download
md5:174c274266c35168314902eb1c2b1e8b
1.2 kB Download
md5:f6f3e7584e8ea0cf5bedc6d14dc47dad
5.7 kB Download
md5:0fb56f0a761eae559856c436f9659cd2
24 Bytes Preview Download
md5:62d35e3443d6a1474f59e3536c17be09
5.1 kB Download
md5:b28026fef45500fc1e57176686d59cec
6.1 kB Download
md5:ec6ede393c78c45ba05d4ac9206742a5
7.2 kB Download
md5:b777413488050c64d5d28d76fb01b072
15.2 kB Download
md5:8ac671e32de1992ca2d3d9888f393fc6
3.5 kB Download
md5:3d734eeaa2e21222ac411e0daca1d952
6.7 kB Download
md5:5a241f2473b2f7699eefae0c7e1e77ce
6.7 kB Download
md5:3b7e585c41d95b9b0247331a26470824
20 Bytes Preview Download

Additional details

Dates

Available
2025-09

Software

Programming language
MATLAB