Acacia invasion triggers cascading effects above- and belowground in fragmented forests
Creators
- 1. University of Coimbra, Coimbra, Portugal|University of Vigo, Vigo, Spain
- 2. University of Coimbra, Coimbra, Portugal
Description
Invasive alien plants like Acacia species are key drivers of ecosystem change, with considerable effects on forest structure, nutrient cycling, and biodiversity. In the Mediterranean region, which is already vulnerable to challenges such as anthropogenic forest fragmentation, Acacia species have become dominant invasive plants at the landscape scale. In this study, we explored the effects of Acacia dealbata Link, and Acacia melanoxylon R. Br. to a lower extent, in a fragmented forest landscape in Central Portugal. We hypothesised that Acacia invasion would alter vegetation structure, litter, soil, and springtail communities, with cascading effects on ecosystem dynamics. We established 25 sampling points within a 25 km2 grid to collect data on Acacia invasion status, vegetation structure (cover of different plant layers and species richness), litter and soil quality (litter C/N ratio and soil organic carbon), and springtail communities (abundances of epigeic, hemiedaphic, and euedaphic springtails). We considered an Acacia invasion gradient as a continuous variable calculated with the sum of the covers of A. dealbata and A. melanoxylon divided by the total tree cover to study the combined effect of the two species. High levels of Acacia invasion were associated with reduced herb cover and plant species richness. Moreover, as Acacia invasion intensified, there was a significant decrease in the litter C/N ratio, and an increase in soil organic carbon. Subsequently, these Acacia-induced impacts triggered cascading effects on the relationships between shrub cover, litter and soil quality, and springtail functional structure. These findings showed that even low levels of Acacia invasion altered above- and belowground dynamics, thereby highlighting the cascading impacts of these invasive alien plant species on ecosystem functioning. Prioritizing early intervention in areas with smaller infestations (i.e., especially in fragmented landscapes like those in Central Portugal) can help prevent further spread and impacts of both A. dealbata and A. melanoxylon.
Files
NB_article_152750.pdf
Files
(2.1 MB)
Name | Size | Download all |
---|---|---|
md5:1c81de74958fb7360ec0e7b9e600c385
|
2.1 MB | Preview Download |
System files
(275.8 kB)
Name | Size | Download all |
---|---|---|
md5:b35cb8f0d237d7cd302fd2d1ee881ac0
|
275.8 kB | Download |
Linked records
Additional details
References
- Auclerc A, Ponge JF, Barot S, Dubs F (2009) Experimental assessment of habitat preference and dispersal ability of soil springtails. Soil Biology & Biochemistry 41: 1596–1604. https://doi.org/10.1016/j.soilbio.2009.04.017
- Bardgett RD, Van Der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515: 505–511. https://doi.org/10.1038/nature13855
- Bellard C, Leroy B, Thuiller W, Rysman JF, Courchamp F (2016) Major drivers of invasion risks throughout the world. Ecosphere 7: e01241. https://doi.org/10.1002/ecs2.1241
- Bentham G (1875) Revision of the suborder Mimoseae. Transactions of the Linnean Society of London 30: 335–664. https://doi.org/10.1111/j.1096-3642.1875.tb00005.x
- Berg MP, Bengtsson J (2007) Temporal and spatial variability in soil food web structure. Oikos 116: 1789–1804. https://doi.org/10.1111/j.0030-1299.2007.15748.x
- Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Maechler M, Bolker BM (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9: 378–400. https://doi.org/10.32614/RJ-2017-066
- Cassini MH (2020) A review of the critics of invasion biology. Biological Reviews of the Cambridge Philosophical Society 95: 1467–1478. https://doi.org/10.1111/brv.12624
- Clarke KR, Warwick RM (2001) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation (2nd edn.). PRIMER-E Ltd.
- Crawley MJ (2012) The R book. John Wiley & Sons.
- da Silva LP, Heleno RH, Costa JM, Valente M, Mata VA, Gonçalves SC, Alves J, Almeida JF, Cardoso P, Fernandes F, Garcia D, Monteiro F, Moreira F, Pires P, Ribeiro AS, Ramos JA (2019) Natural woodlands hold more diverse, abundant, and unique biota than novel anthropogenic forests: A multi-group assessment. European Journal of Forest Research 138: 461–472. https://doi.org/10.1007/s10342-019-01183-5
- Delgado-Baquerizo M, García-Palacios P, Milla R, Gallardo A, Maestre FT (2015) Soil characteristics determine soil carbon and nitrogen availability during leaf litter decomposition regardless of litter quality. Soil Biology & Biochemistry 81: 134–142. https://doi.org/10.1016/j.soilbio.2014.11.009
- Dyderski MK, Jagodziński AM (2019) Functional traits of acquisitive invasive woody species differ from conservative invasive and native species. NeoBiota 41: 91–113. https://doi.org/10.3897/neobiota.41.31908
- Ferreira V, Figueiredo A, Graça MAS, Marchante E, Pereira A (2021) Invasion of temperate deciduous broadleaf forests by N-fixing tree species – consequences for stream ecosystems. Biological Reviews of the Cambridge Philosophical Society 96: 877–902. https://doi.org/10.1111/brv.12682
- Foxcroft LC, Spear D, Van Wilgen NJ, McGeoch MA (2019) Assessing the association between pathways of alien plant invaders and their impacts in protected areas. NeoBiota 43: 1–25. https://doi.org/10.3897/neobiota.43.29644
- Fujii S, Takeda H (2012) Succession of collembolan communities during decomposition of leaf and root litter: Effects of litter type and position. Soil Biology & Biochemistry 54: 77–85. https://doi.org/10.1016/j.soilbio.2012.04.021
- Garcia F, Alves da Silva A, Heleno R, Sousa JP, Alves J (2023) Red deer as a disperser of native, but not invasive plants' seeds. Integrative Zoology 18: 859–866. https://doi.org/10.1111/1749-4877.12729
- García-Palacios P, Maestre FT, Kattge J, Wall DH (2013) Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters 16: 1045–1053. https://doi.org/10.1111/ele.12137
- Gentili R, Ferré C, Cardarelli E, Caronni S, Montagnani C, Abu El Khair D, Stinca A, Catorci A, Santi E, Fulgenti A, Comolli R (2022) Performing as a transformer species? The invasive alien Reynoutria bohemica changes ecosystem properties in a riparian woodland. Weed Research 62: 446–456. https://doi.org/10.1111/wre.12558
- Gerlach A, Russell DJ, Jaeschke B, Römbke J (2014) Feeding preferences of native terrestrial isopod species (Oniscoidea, Isopoda) for native and introduced leaf litter. Applied Soil Ecology 83: 95–100. https://doi.org/10.1016/j.apsoil.2014.02.006
- Gillespie LM, Hättenschwiler S, Milcu A, Wambsganss J, Shihan A, Fromin N (2021) Tree species mixing affects soil microbial functioning indirectly via root and litter traits and soil parameters in European forests. Functional Ecology 35: 2190–2204. https://doi.org/10.1111/1365-2435.13877
- Gisin H (1960) Collembolenfauna Europas. Museum d'Histoire Naturelle, Geneve.
- González L, Souto XC, Reigosa MJ (1995) Allelopathic effects of Acacia melanoxylon R. Br. phyllodes during their decomposition. Forest Ecology and Management 77: 53–63. https://doi.org/10.1016/0378-1127(95)03581-T
- Gruss I, Yin R, Julia S, Eisenhauer N, Schädler M (2023) The responses of Collembola biomass to climate and land-use changes vary with life form. Soil & Tillage Research 225: e105541. https://doi.org/10.1016/j.still.2022.105541
- Heringer G, Thiele J, do Amaral CH, Meira-Neto JAA, Matos FAR, Lehmann JRK, Buttschardt TK, Neri AV (2020) Acacia invasion is facilitated by landscape permeability: The role of habitat degradation and road networks. Applied Vegetation Science 23: 598–609. https://doi.org/10.1111/avsc.12520
- IPBES (2024) Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In: Roy HE, Pauchard A, Stoett P, Renard Truong T, Bacher S, Galil BS, Hulme PE, Ikeda T, Sankaran KV, McGeoch MA, Meyerson LA, Nuñez MA, Ordonez A, Rahlao SJ, Schwindt E, Seebens H, Sheppard AW, Vandvik V (Eds) IPBES secretariat, Bonn. https://www.ipbes.net/document-library-catalogue/summary-policymakers-invasive-alien-species-assessment
- IPMA (2025) Instituto Português do Mar e da Atmosfera. https://www.ipma.pt/ [Last access: 1st February 2025]
- Krab EJ, Oorsprong H, Berg MP, Cornelissen JH (2010) Turning northern peatlands upside down: Disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Functional Ecology 24: 1362–1369. https://doi.org/10.1111/j.1365-2435.2010.01754.x
- Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623–1627. https://doi.org/10.1126/science.1097396
- Lazzaro L, Giuliani C, Fabiani A, Agnelli AE, Pastorelli R, Lagomarsino A, Bottacin M, Foggi B (2014) Soil and plant changing after invasion: The case of Acacia dealbata in a Mediterranean ecosystem. The Science of the Total Environment 497: 491–498. https://doi.org/10.1016/j.scitotenv.2014.08.014
- Lee MR, Bernhardt ES, van Bodegom PM, Laughlin DC, Schmid B (2017) Invasive species' leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: A meta-analysis. The New Phytologist 213: 128–139. https://doi.org/10.1111/nph.14115
- Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. The New Phytologist 177: 706–714. https://doi.org/10.1111/j.1469-8137.2007.02290.x
- Liebhold AM, Brockerhoff EG, Kalisz S, Nuñez MA, Wardle DA, Wingfield MJ (2017) Biological invasions in forest ecosystems. Biological Invasions 19: 3437–3458. https://doi.org/10.1007/s10530-017-1458-5
- Lindberg N, Bengtsson J (2005) Population responses of oribatid mites and collembolans after drought. Applied Soil Ecology 28: 163–174. https://doi.org/10.1016/j.apsoil.2004.07.003
- LNEG (2025) Laboratório Nacional de Energia e Geologia. https://geoportal.lneg.pt/ [Last access: 1st February 2025]
- Long K, Yin R, Kardol P, Wei Q, Li Y, Huang J (2023) Bamboo invasion alters Collembola community composition varying with life-forms. Pest Management Science 79: 2517–2526. https://doi.org/10.1002/ps.7434
- López-Núñez FA, Heleno RH, Ribeiro S, Marchante H, Marchante E (2017) Four-trophic level food webs reveal the cascading impacts of an invasive plant targeted for biocontrol. Ecology 98: 782–793. https://doi.org/10.1002/ecy.1701
- Lorenzo P, Rodríguez-Echeverría S, González L, Freitas H (2010a) Effect of invasive Acacia dealbata Link on soil microorganisms as determined by PCR-DGGE. Applied Soil Ecology 44: 245–251. https://doi.org/10.1016/j.apsoil.2009.12.008
- Lorenzo P, González L, Reigosa MJ (2010b) The genus Acacia as invader: The characteristic case of Acacia dealbata Link in Europe. Annals of Forest Science 67: e101. https://doi.org/10.1051/forest/2009083
- Lorenzo P, Palomera-Pérez A, Reigosa MJ, González L (2011) Allelopathic interference of invasive Acacia dealbata Link on the physiological parameters of native understory species. Plant Ecology 212: 403–412. https://doi.org/10.1007/s11258-010-9831-9
- Lorenzo P, Pazos-Malvido E, Rubido-Bará M, Reigosa MJ, González L (2012) Invasion by the leguminous tree Acacia dealbata (Mimosaceae) reduces the native understorey plant species in different communities. Australian Journal of Botany 60: 669–675. https://doi.org/10.1071/BT12036
- Lorenzo P, Rodríguez J, González L, Rodríguez-Echeverría S (2017) Changes in microhabitat, but not allelopathy, affect plant establishment after Acacia dealbata invasion. Journal of Plant Ecology: rtw061. https://doi.org/10.1093/jpe/rtw061
- Luan J, Liu S, Li S, Whalen JK, Wang Y, Wang J, Liu Y, Dong W, Chang SX (2021) Functional diversity of decomposers modulates litter decomposition affected by plant invasion along a climate gradient. Journal of Ecology 109: 1236–1249. https://doi.org/10.1111/1365-2745.13548
- Madureira KH, Ferreira V (2022) Colonization and decomposition of litter produced by invasive Acacia dealbata and native tree species by stream microbial decomposers. Limnetica 41: 201–218. https://doi.org/10.23818/limn.41.14
- Marchante E, Kjøller A, Struwe S, Freitas H (2009) Soil recovery after removal of the N2-fixing invasive Acacia longifolia: Consequences for ecosystem restoration. Biological Invasions 11: 813–823. https://doi.org/10.1007/s10530-008-9295-1
- Marchante H, Marchante E, Freitas H, Hoffmann JH (2015) Temporal changes in the impacts on plant communities of an invasive alien tree, Acacia longifolia. Plant Ecology 216: 1481–1498. https://doi.org/10.1007/s11258-015-0530-4
- Marchante E, Marchante H, Freitas H, Kjøller A, Struwe S (2019) Decomposition of an N-fixing invasive plant compared with a native species: Consequences for ecosystem. Applied Soil Ecology 138: 19–31. https://doi.org/10.1016/j.apsoil.2019.01.004
- Marchante E, Colaço CM, Skulska I, Ulm F, González L, Duarte LN, Neves S, Gonçalves C, Maggiolli S, Dias J, Máguas C, Fernandes N, Fernandes L, Marchante H (2023) Management of invasive Australian Acacia species in the Iberian Peninsula. In: Richardson DM, Le Roux JJ, Marchante E (Eds) Wattles – Australian Acacia Species Around the World. CABI, 438–454. https://doi.org/10.1079/9781800622197.0027
- Marian F, Sandmann D, Krashevska V, Maraun M, Scheu S (2018) Altitude and decomposition stage rather than litter origin structure soil microarthropod communities in tropical montane rainforests. Soil Biology & Biochemistry 125: 263–274. https://doi.org/10.1016/j.soilbio.2018.07.017
- Martins da Silva PM, Carvalho F, Dirilgen T, Stone D, Creamer R, Bolger T, Sousa JP (2016) Traits of collembolan life-form indicate land use types and soil properties across a European transect. Applied Soil Ecology 97: 69–77. https://doi.org/10.1016/j.apsoil.2015.07.018
- Martins da Silva PM, Bartz M, Mendes S, Boieiro M, Timóteo S, Azevedo-Pereira HM, Sousa JP, Macedo C, Fonseca C, Nunes M, Moreira F (2023) Tree canopy enhances Collembola functional richness and diversity across typical habitats of the Gorongosa National Park (Mozambique). Applied Soil Ecology 190: e105010. https://doi.org/10.1016/j.apsoil.2023.105010
- Mathakutha R, Steyn C, le Roux PC, Blom IJ, Chown SL, Daru BH, Greve M, Bezuidenhout H, Bezuidenhout S, Elith J, Heikkinen RK, Hugo M, Mucina L, Musil CF, Msweli SM, O'Connor TG (2019) Invasive species differ in key functional traits from native and non‐invasive alien plant species. Journal of Vegetation Science 30: 994–1006. https://doi.org/10.1111/jvs.12772
- Matos FA, Edwards DP, Magnago LFS, Heringer G, Viana Neri A, Buttschardt T, Dudeque Zenni R, Tavares de Menezes LF, Zamborlini Saiter F, Gonçalves Reynaud Schaefer CE, Hissa Safar NV, Pacheco da Silva M, Simonelli M, Martins SV, Santin Brancalion PH, Meira-Neto JAA (2023) Invasive alien acacias rapidly stock carbon, but threaten biodiversity recovery in young second-growth forests. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 378: e20210072. https://doi.org/10.1098/rstb.2021.0072
- McCary MA, Wise DH (2019) Plant invader alters soil food web via changes to fungal resources. Oecologia 191: 587–599. https://doi.org/10.1007/s00442-019-04510-0
- Montesinos D, Castro S, Rodríguez-Echeverría S (2016) Two invasive Acacia species secure generalist pollinators in invaded communities. Acta Oecologica 74: 46–55. https://doi.org/10.1016/j.actao.2016.06.002
- Mora C, Vieira G (2020) The climate of Portugal. In: Vieira G, Zêzere JL, Mora C (Eds) Landscapes and Landforms of Portugal. World Geomorphological Landscapes. Springer Nature, 33–46. https://doi.org/10.1007/978-3-319-03641-0_2
- Moretti M, Dias AT, De Bello F, Altermatt F, Chown SL, Azcárate FM, Bell JR, Fournier B, Hedde M, Hortal J, Ibanez S, Öckinger E, Sousa JPS, Ellers J, Berg MP (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology 31: 558–567. https://doi.org/10.1111/1365-2435.12776
- Murphy DJ, Maslin B (2023) Acacia: Taxonomy and phylogeny. In: Richardson DM, Le Roux JJ, Marchante E (Eds) Wattles – Australian Acacia Species Around the World. CABI, 27–40. https://doi.org/10.1079/9781800622197.0002
- Nascimento E, Reis F, Chichorro F, Canhoto C, Goncalves AL, Simoes S, Sousa JP, da Silva PM (2019) Effects of management on plant litter traits and consequences for litter mass loss and Collembola functional diversity in a Mediterranean agro-forest system. Pedobiologia 75: 38–51. https://doi.org/10.1016/j.pedobi.2019.05.002
- Nereu M, Silva JS, Timóteo S (2024) Site and landscape scale drivers of bird and insect diversity in native and novel forest ecosystems of central Portugal. Forest Ecology and Management 553: e121634. https://doi.org/10.1016/j.foreco.2023.121634
- Ohlemüller R, Walker S, Bastow Wilson J (2006) Local vs regional factors as determinants of the invasibility of indigenous forest fragments by alien plant species. Oikos 112: 493–501. https://doi.org/10.1111/j.0030-1299.2006.13887.x
- Paradis E, Schliep K (2019) ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526–528. https://doi.org/10.1093/bioinformatics/bty633
- Parisi V, Menta C, Gardi C, Jacomini C, Mozzanica E (2005) Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agriculture, Ecosystems & Environment 105: 323–333. https://doi.org/10.1016/j.agee.2004.02.002
- Pereira A, Ferreira V (2022) Increasing inputs of invasive N‐fixing Acacia litter decrease litter decomposition and associated microbial activity in streams. Freshwater Biology 67: 292–308. https://doi.org/10.1111/fwb.13841
- Pereira A, Figueiredo A, Ferreira V (2021) Invasive Acacia tree species affect instream litter decomposition through changes in water nitrogen concentration and litter characteristics. Microbial Ecology 82: 257–273. https://doi.org/10.1007/s00248-021-01749-0
- Petersen H (2002) General aspects of collembolan ecology at the turn of the millennium: Proceedings of the Xth international colloquium on Apterygota, České Budějovice 2000: Apterygota at the beginning of the third millennium. Pedobiologia 46: 246–260. https://doi.org/10.1078/0031-4056-00131
- Pollet S, Chabert A, Burgeon V, Cornélis JT, Fouché J, Gers C, Hardy B, Pey B (2022) Limited effects of century-old biochar on taxonomic and functional diversities of collembolan communities across land-uses. Soil Biology & Biochemistry 164: e108484. https://doi.org/10.1016/j.soilbio.2021.108484
- Pollierer MM, Scheu S (2017) Driving factors and temporal fluctuation of Collembola communities and reproductive mode across forest types and regions. Ecology and Evolution 7: 4390–4403. https://doi.org/10.1002/ece3.3035
- Potapov AA, Semenina EE, Korotkevich AY, Kuznetsova NA, Tiunov AV (2016) Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biology & Biochemistry 101: 20–31. https://doi.org/10.1016/j.soilbio.2016.07.002
- POWO (2025) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. https://powo.science.kew.org/ [Last access: 26th January 2025]
- Prescott CE, Zukswert JM (2016) Invasive plant species and litter decomposition: Time to challenge assumptions. The New Phytologist 209: 5–7. https://doi.org/10.1111/nph.13741
- Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annual Review of Environment and Resources 35: 25–55. https://doi.org/10.1146/annurev-environ-033009-095548
- Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, Dawson W, Essl F, Foxcroft LC, Genovesi P, Holmes ND, Jeschke JM, Katsanevakis S, Kühn I, Liebhold AM, Mandrak NE, Meyerson LA, Nuñez MA, Pyšek A, Ricciardi A, Richardson DM, Rilov G, Seebens H, van Kleunen M, Vilà M, Wingfield MJ, Zenni RD (2020) Scientists' warning on invasive alien species. Biological Reviews of the Cambridge Philosophical Society 95: 1511–1534. https://doi.org/10.1111/brv.12627
- R Core Team (2024) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/
- Rascher KG, Große-Stoltenberg A, Máguas C, Meira-Neto JAA, Werner C (2011) Acacia longifolia invasion impacts vegetation structure and regeneration dynamics in open dunes and pine forests. Biological Invasions 13: 1099–1113. https://doi.org/10.1007/s10530-011-9949-2
- Raymond-Léonard LJ, Gravel D, Reich PB, Handa IT (2018) Springtail community structure is influenced by functional traits but not biogeographic origin of leaf litter in soils of novel forest ecosystems. Proceedings. Biological Sciences 285: 20180647. https://doi.org/10.1098/rspb.2018.0647
- Reis F, Carvalho F, da Silva PM, Mendes S, Santos SA, Sousa JP (2016) The use of a functional approach as surrogate of Collembola species richness in European perennial crops and forests. Ecological Indicators 61: 676–682. https://doi.org/10.1016/j.ecolind.2015.10.019
- Renner MA, Foster CS, Miller JT, Murphy DJ (2021) Phyllodes and bipinnate leaves of Acacia exhibit contemporary continental-scale environmental correlation and evolutionary transition-rate heterogeneity. Australian Systematic Botany 34: 595–608. https://doi.org/10.1071/SB21009
- Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species–a global review. Diversity & Distributions 17: 788–809. https://doi.org/10.1111/j.1472-4642.2011.00782.x
- Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: Concepts and definitions. Diversity & Distributions 6: 93–107. https://doi.org/10.1046/j.1472-4642.2000.00083.x
- Richardson DM, Marchante E, Le Roux JJ (2023) Australian Acacia species around the world: Historical, social, evolutionary and ecological insights into one of the planet's most widespread plant genera. In: Richardson DM, Le Roux JJ, Marchante E (Eds) Wattles – Australian Acacia Species Around the World. CABI, 26 pp https://doi.org/10.1079/9781800622197.0001.
- Robinson TB, Martin N, Loureiro TG, Matikinca P, Robertson MP (2020) Double trouble: The implications of climate change for biological invasions. NeoBiota 62: 463–487. https://doi.org/10.3897/neobiota.62.55729
- Rodríguez J, Lorenzo P, González L (2017) Different growth strategies to invade undisturbed plant communities by Acacia dealbata Link. Forest Ecology and Management 399: 47–53. https://doi.org/10.1016/j.foreco.2017.05.007
- Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley LB, Cook GD, Schmidt S (2009) Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecological Applications 19: 1546–1560. https://doi.org/10.1890/08-0265.1
- Roy HE, Pauchard A, Stoett PJ, Renard Truong T, Meyerson LA, Bacher S, Galil BS, Hulme PE, Ikeda T, Kavileveettil S, McGeoch MA, Nuñez MA, Ordonez A, Rahlao SJ, Schwindt E, Seebens H, Sheppard AW, Vandvik V, Aleksanyan A, Ansong M, August T, Blanchard R, Brugnoli E, Bukombe JK, Bwalya B, Byun C, Camacho-Cervantes M, Cassey P, Castillo ML, Courchamp F, Dehnen-Schmutz K, Zenni RD, Egawa C, Essl F, Fayvush G, Fernandez RD, Fernandez M, Foxcroft LC, Genovesi P, Groom QJ, González AI, Helm A, Herrera I, Hiremath AJ, Howard PL, Hui C, Ikegami M, Keskin E, Koyama A, Ksenofontov S, Lenzner B, Lipinskaya T, Lockwood JL, Mangwa DC, Martinou AF, McDermott SM, Morales CL, Müllerová J, Mungi NA, Munishi LK, Ojaveer H, Pagad SN, Pallewatta NPKTS, Peacock LR, Per E, Pergl J, Preda C, Pyšek P, Rai RK, Ricciardi A, Richardson DM, Riley S, Rono BJ, Ryan-Colton E, Saeedi H, Shrestha BB, Simberloff D, Tawake A, Tricarico E, Vanderhoeven S, Vicente J, Vilà M, Wanzala W, Werenkraut V, Weyl OLF, Wilson JRU, Xavier RO, Ziller SR (2024) Curbing the major and growing threats from invasive alien species is urgent and achievable. Nature Ecology & Evolution: 1–8. https://doi.org/10.1038/s41559-024-02412-w
- Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity and Conservation 7: 1207–1219. https://doi.org/10.1023/A:1008887817883
- Sousa JP, da Gama MM, Pinto C, Keating A, Calhôa F, Lemos M, Castro C, Luz AM, Leitão P, Dias T, Dias S (2004) Effects of land-use on Collembola diversity patterns in a Mediterranean landscape. Pedobiologia 48: 609–622. https://doi.org/10.1016/j.pedobi.2004.06.004
- Souza-Alonso P, Novoa A, González L (2014) Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biology & Biochemistry 79: 100–108. https://doi.org/10.1016/j.soilbio.2014.09.008
- Souza-Alonso P, Guisande-Collazo A, González L (2015) Gradualism in Acacia dealbata Link invasion: Impact on soil chemistry and microbial community over a chronological sequence. Soil Biology & Biochemistry 80: 315–323. https://doi.org/10.1016/j.soilbio.2014.10.022
- Souza-Alonso P, Rodríguez J, González L, Lorenzo P (2017) Here to stay: Recent advances and perspectives about Acacia invasion in Mediterranean areas. Annals of Forest Science 74: 1–20. https://doi.org/10.1007/s13595-017-0651-0
- Souza-Alonso P, Guisande-Collazo A, Lechuga-Lago Y, González L (2024) Changes in decomposition dynamics, soil community function and the growth of native seedlings under the leaf litter of two invasive plants. Biological Invasions 26: 3695–3714. https://doi.org/10.1007/s10530-024-03405-3
- Unwin GL, Jennings SM, Hunt MA (2006) Light environment and tree development of young Acacia melanoxylon in mixed-species regrowth forest, Tasmania, Australia. Forest Ecology and Management 233: 240–249. https://doi.org/10.1016/j.foreco.2006.05.015
- Vandewalle M, De Bello F, Berg MP, Bolger T, Dolédec S, Dubs F, Feld CK, Harrington R, Harrison PA, Lavorel S, da Silva PM, Moretti M, Niemelä J, Santos P, Sattler T, Sousa JP, Woodcock BA (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation 19: 2921–2947. https://doi.org/10.1007/s10531-010-9798-9
- Vieites-Blanco C, González-Prieto SJ (2020) Invasiveness, ecological impacts, and control of acacias in southwestern Europe–a review. Web Ecology 20: 33–51. https://doi.org/10.5194/we-20-33-2020
- Vilà M, Ibáñez I (2011) Plant invasions in the landscape. Landscape Ecology 26: 461–472. https://doi.org/10.1007/s10980-011-9585-3
- Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: A meta‐analysis of their effects on species, communities, and ecosystems. Ecology Letters 14: 702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x
- Vivanco L, Austin AT (2008) Tree species identity alters forest litter decomposition through long‐term plant and soil interactions in Patagonia, Argentina. Journal of Ecology 96: 727–736. https://doi.org/10.1111/j.1365-2745.2008.01393.x
- Wardle DA, Peltzer DA (2017) Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biological Invasions 19: 3301–3316. https://doi.org/10.1007/s10530-017-1372-x
- Warren RJ, Bahn V, Kramer TD, Tang Y, Bradford MA (2011) Performance and reproduction of an exotic invader across temperate forest gradients. Ecosphere 2: 1–19. https://doi.org/10.1890/ES10-00181.1
- Xie Z, Lux J, Wu Y, Sun X, Chen TW, Zhu J, Zhang J, Wu D, Scheu S (2024) Intraspecific variability and species turnover drive variations in Collembola body size along a temperate-boreal elevation gradient. Geoderma 441: e116731. https://doi.org/10.1016/j.geoderma.2023.116731