Integrated Gene Expression Resource for Multi-Subtype Acute Myeloid Leukemia: A Global Reference Dataset
Description
Acute Myeloid Leukemia (AML) is a highly heterogeneous hematologic malignancy with multiple clinically relevant subtypes. Despite the availability of numerous gene expression datasets, there is no comprehensive, balanced, and multi-cohort resource integrating all major AML subtypes. Here, we present an integrated gene expression resource for seven key AML subtypes, curated from eight publicly available GEO datasets (GSE13159, GSE6891, GSE14468, GSE15434, GSE10358, GSE61804, GSE71014, GSE12417). The dataset comprises 338 samples with standardized metadata, consistent labeling, and batch-corrected expression matrices. Advanced preprocessing, label harmonization, and balanced sampling ensure equal representation across subtypes. This resource is ready for machine learning, biomarker discovery, and cross-study validation, providing a global reference dataset for AML research.
Files
Integrated Gene Expression Resource for Multi-Subtype Acute Myeloid Leukemia A Global Reference Dataset.pdf
Files
(307.3 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:2afe49cbc9eddda779b003cbc33d6e97
|
307.3 kB | Preview Download |
Additional details
References
- [1] D. C. de Kouchkovsky and R. Abdul-Hay, "Acute myeloid leukemia: A comprehensive review and 2016 update," Blood Cancer J., vol. 6, no. 7, pp. e441, 2016. [2] T. T. Ley, R. S. Miller, and E. R. Ding, "Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia," N. Engl. J. Med., vol. 368, pp. 2059–2074, 2013. [3] The Cancer Genome Atlas Research Network, "Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia," N. Engl. J. Med., vol. 368, pp. 2059–2074, 2013. [4] A. W. Bullinger et al., "An eight-gene expression signature predicts prognosis in acute myeloid leukemia," J. Clin. Oncol., vol. 24, no. 30, pp. 4790–4798, 2006. [5] R. Valk et al., "Expression profiling identifies distinct subclasses of acute myeloid leukemia with clinical relevance," Proc. Natl. Acad. Sci. U.S.A., vol. 100, no. 16, pp. 930–939, 2003. [6] GEO Accession Viewer, NCBI, "GSE13159: Microarray dataset," [Online]. Available: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13159 [7] GEO Accession Viewer, NCBI, "GSE6891: Microarray dataset," [Online]. Available: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6891 [8] GEO Accession Viewer, NCBI, "GSE14468: Microarray dataset," [Online]. Available: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14468 [9] GEO Accession Viewer, NCBI, "GSE15434: Microarray dataset," [Online]. Available: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15434 [10] GEO Accession Viewer, NCBI, "GSE10358: Microarray dataset," [Online]. Available: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10358 [11] GEO Accession Viewer, NCBI, "GSE61804: Microarray dataset," [Online]. Available: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61804 [12] GEO Accession Viewer, NCBI, "GSE71014: Microarray dataset," [Online]. Available: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71014 [13] GEO Accession Viewer, NCBI, "GSE12417: Microarray dataset," [Online]. Avai