Published August 30, 2025 | Version CC-BY-NC-ND 4.0
Journal article Open

Green Hydrogen Production Utilizing Solar Energy and Other Renewable Energy Sources, Addressing Climate Change Mitigation

  • 1. K-10, Sector-19, Gandhinagar (Gujarat), India.

Contributors

Contact person:

  • 1. K-10, Sector-19, Gandhinagar (Gujarat), India.
  • 2. Former Vice Chancellor, Sankalchand Patel University, Ambaji-Gandhinagar State Highway, Visnagar (Gujarat), India.

Description

Abstract: The Industrial Revolution has brought about significant technological and economic progress. Still, it has also led to a notable rise in atmospheric carbon dioxide, which contributes to global warming and climate change. Industrialisation, urbanisation, and agricultural expansion have increased energy demands and raised environmental concerns. In response, clean energy technologies such as solar and wind power are increasingly replacing fossil fuels. India, the third-largest emitter of carbon dioxide and a significant energy consumer, requires a diverse range ofrenewable energy sourcesto achieve its decarbonization targets. The transition to sustainable energy involves zero-emissions electricity systems and low-emission carriers, including biogas and hydrogen, as well as electric vehicles. Hydrogen has the potential to decarbonise both the stationery and mobility sectors, including shipping and aviation. To maximise the benefits of green hydrogen, issuesrelated to costs, infrastructure, and scalability must be addressed. Greater support from governments and industry stakeholders for research and development is crucial to making hydrogen technologies more accessible and effective in achieving decarbonization goals.

Files

A105105011125.pdf

Files (720.2 kB)

Name Size Download all
md5:65abe3749bd3defd3fb4e2c5c55e361c
720.2 kB Preview Download

Additional details

Identifiers

Dates

Accepted
2025-08-15
Manuscript received on 01 August 2025 | Manuscript Accepted on 15 August 2025 | Manuscript published on 30 August 2025.

References

  • Yang, Y.; Xia, S.; Huang, P.; Qian, J., 2024, Energy transition: Connotations, mechanisms and effects. Energy Strategy Rev. 2024, 52, https://doi.org/10.1016/j.esr.2024.101320.
  • Chi, J. and Yu, H., 2018, Water electrolysis based on renewable energy for Hydrogen production, Chinese Journal of Catalysis, vol. 39, no. 3, pp. 390–394, Mar. 2018. doi: https://doi.org/10.1016/s1872- 2067(17)62949-8. j. ijhydene.2020.06.302.
  • Aboalfotouh, M, Othman, A. S., Kolaib, A., El-mwafi, A., Alqadi, M. S., Eslam Tarik, E., 2024, Green hydrogen production by using an integrated unit powered by wind and solar energies, Technical Report, Mechanical Power Engineering Department, Helwan University, Egypt, DOI: https://doi.org/10.13140/RG.2.2.10422.10565.
  • Osman, A.I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., Rooney, D. W., Yap, P.S., 2023, Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ. Chem. Lett. 2023, 21, 741-764, https://doi.org/10.1007/s10311-022-01532-8.
  • Avargani, V. M., Habibzadeh, M., Maarof, A., Zendehboudi, S. and Duan, X., 2025, Harnessing Renewable Energy for Hydrogen Production: Advances, Challenges, and Opportunities, Industrial & Engineering Chemistry Research 2025 64 (25), 12368-12418, DOI: https://doi.org/10.1021/acs.iecr.5c00061.
  • International Energy Agency (IEA), 2019, The future of hydrogen, Seizing today's opportunities. Report prepared by IEA for the G20, Japan, 2019.
  • Amin, M., Fareed, A. G., Shah, H. H. and Khan, W. U., 2022, Hydrogen production through renewable and non-renewable energy processes and their impact on climate change, International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2022.07.172.
  • Ji, M. and Wang, J., Review and Comparison of Various Hydrogen Production Methods Based on Costs and Life Cycle Impact Assessment Indicators, Int. J. Hydrogen Energy, 46 (2021), 78, pp. 38612-38635 https://doi.org/10.1016/j.ijhydene.2021.09.142.
  • Agyekum, E. B., Nutakor, C., Agwa, A. M., and Kamel, S., 2022, A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation, Membranes (Basel)., 12 (2022), 2, 173, https://doi.org/10.3390/membranes12020173.
  • Hermesmann, M., Muller, T. E., 2022, Green, Turquoise, Blue, Or Grey? Environmentally Friendly Hydrogen Production in Transforming Energy Systems, Prog. Energy Combust. Sci., 90 (2022), https://doi.org/10.1016/j.pecs.2022.100996.
  • Global Hydrogen Review 2024. Online edition: https://www.iea.org/reports/global-hydrogen-review2024/executivesummary
  • Mostafa, E. S., 2023, Hydrogen production by water electrolysis technologies: A review. Results Eng. 2023, 20, https://doi.org/10.1016/j.rineng.2023.101426.
  • Kumar, S.S. and Hankwon, L. 2022, An overview of water electrolysis technologies for green hydrogen production. Energy Rep. 2022, 8, 13793–13813, https://doi.org/10.1016/j.egyr.2022.10.127.
  • Awad, M., Said, A., Saad, M. H., Farouk, A., Mahmoud, M. M., Alshammari, M. S., Alghaythi, M. L., Aleem, S. H. A., Abdelaziz, A. Y., Omar, A. I., 2024, A review of water electrolysis for green hydrogen generation considering PV/wind/hybrid/hydropower/geothermal/tidal and wave/biogas energy systems, economic analysis, and its application. Alex. Eng. J. 2024, 87, 213–239.
  • Islam, A., Islam, T., Mahmud, H., Raihan, O., Islam, S., Marwani, H. M., Rahman, M. M., Asiri, A. M., Hasan, M., Hasan, N., 2024, Accelerating the green hydrogen revolution: A comprehensive analysis of technological advancements and policy interventions. Int. J. Hydrogen Energy 2024, 67, 458–486.
  • Reda, B., Elzamar, A. A., AlFazzani, S. and Ezzat, S. M., 2024, Green hydrogen as a source of renewable energy: A step towards sustainability, an overview. Environ. Dev. Sustain. 2024, 2, 1–21.
  • Fatima, D., Vieira, L. G. M. and Damasceno, J. J. R., 2018, Hydrogen production by a low-cost electrolyser developed through the combination of alkaline water electrolysis and solar energy use. Int J Hydrogen Energy 2018;43:4265e75. https://doi.org/10.1016/j.ijhydene.2018.01.051
  • Zhang, H., Wang, L., Van, H. J., Marechal, F., & Desideri, U. (2019). Techno-economic Comparison of Green Ammonia Production Processes. Appl Energy 2020;259. https://doi.org/10.1016/j.apenergy.2019.114135
  • Ishaq, H. and Dincer, I., 2019, A comparative evaluation of OTEC, solar and wind energy-based systems for clean hydrogen production. J Clean Prod 2020;246. https://doi.org/10.1016/j.jclepro.2019.118736
  • Posso, F., Sanchez, J., Espinoza, J. L. and Siguencia, J., 2016, Preliminary estimation of electrolytic hydrogen production potential from renewable energies in Ecuador. Int J Hydrogen Energy 2016;41:2326e44. https://doi.org/10.1016/j.ijhydene.2015.11.155
  • Li, Z., Guo, P., Han, R. and Sun, H., 2019, Current status and development trend of wind power generation-based hydrogen production technology. Energy Explor Exploit 2019; 37:5e25. https://doi.org/10.1177/0144598718787294
  • Ruocco C., Palma, V. and Ricca A. Kinetics of oxidative steam reforming of ethanol over bimetallic catalysts supported on CeO2-SiO2: a comparative study. Top Catal 2019; 62:467-478. https://doi.org/10.1007/s11244-019-01173-2
  • Wang, Y., Wang, C., Chen, M., Tang, Z., Yang, Z. and Hu, J., 2019, Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts - Part I: effect of nickel content. Fuel Process Technol 2019; 192:227-238. https://doi.org/10.1016/j.fuproc.2019.04.031
  • Abdin, Z., Zafaranloo, A., Rafiee, A., Merida, W., Lipinski, W. and Khalilpour, K. R., 2019, Hydrogen as an energy vector. Renew Sustain Energy Rev. 2020; 120. https://doi.org/10.1016/j.rser.2019.109620.
  • Wang, Y., Wang, C., Chen, M., Tang, Z., Yang, Z. and Hu, J., 2019, Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts - Part I: effect of nickel content. Fuel Process Technol 2019;192:227-238. https://doi.org/10.1016/j.fuproc.2019.04.031.
  • Reddy, C. V., Reddy, K. R., Harish, V. V. N., Shim, J., Shankar, M. V. and Shetti, N. P., 2020, Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and their applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int J Hydrogen Energy 2020;45:7656e79. https://doi.org/10.1016/j.ijhydene.2019.02.144
  • Reddy, C. V., Reddy, I. N., Ravindranadh, K., Reddy, K. R., Shetti, N. P. and Kim, D., 2020, Copper-doped ZrO2 nanoparticles as highperformance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J Environ Manag 2020;260:110088. https://doi.org/10.1016/j.jenvman.2020.110088
  • Sharma, S., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Wasteto-Energy Nexus for a Circular Economy and Environmental Protection: Recent Trends in Hydrogen Energy. Sci Total Environ 2020; 713:136633. https://doi.org/10.1016/j.scitotenv.2020.136633
  • Srivastava, R. K., Shetti, N. P., Reddy, K. R. and Aminabhavi, T. M., 2020, Sustainable energy from waste organic matters via efficient microbial processes. Sci Total Environ 2020; 722:137927. https://doi.org/10.1016/j.scitotenv.2020.137927
  • Monga, D., Ilager, D., Shetti, N. P., Basu, S. and Aminabhavi, T. M., 2020, 2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced visible-light-driven photocatalytic and electrochemical degradation of organic pollutants. J Environ Manag 2020; 274:111208. https://doi.org/10.1016/j.jenvman.2020.111208
  • Sharma, S., Basu, S., Shetti, N. P., Kamali, M., Walvekar, P. and Aminabhavi, T. M., 2020, Waste-to-energy nexus: a sustainable development. Environ Pollut 2020; 267:115501. https://doi.org/10.1016/j.envpol.2020.115501
  • Srivastava, R. K., Shetti, N. P., Reddy, K. R., & Aminabhavi, T. M. (2020). Biofuels, biodiesel, and biohydrogen production using bioprocesses. A review. Environ Chem Lett 2020; 18:1049e72. https://doi.org/10.1007/s10311-020-00999-7
  • Karthik, K. V., Reddy, C. V., Reddy, K. R., Ravishankar, R., Sanjeev, G. and Kulkarni, R. V., 2019, Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants. J Mater Sci Mater Electron 2019; 30:20646-20653. https://doi.org/10.1007/s10854-019-02430-6
  • Reddy, C. V., Reddy, K. R., Shetti, N. P., Shim, J, Aminabhavi, T. M. and Dionysiou, D. D., 2020, Hetero-nanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting: a review. Int J Hydrogen Energy 2020;45:18331e47. https://doi.org/10.1016/j.ijhydene.2019.02.109
  • Rao, V. N., Reddy, N. L., Kumari, M. M., Cheralathan, K. K., Ravi, P. and Sathish, M., 2019, Sustainable hydrogen production for the greener environment by quantum dots-based efficient photocatalysts: a review. J Environ Manag 2019; 248:109246. https://doi.org/10.1016/j.jenvman.2019.07.017
  • Singla, S., Sharma, S., Basu, S., Shetti, N. P. and Reddy, K. R., 2020, Graphene/graphitic carbon nitride-based ternary nanohybrids: synthesis methods, properties, and applications for photocatalytic hydrogen production. Flat Chem 2020; 24:100200. https://doi.org/10.1016/j.flatc.2020.100200
  • Sikander, U., Sufian, S. and Salam, M. A., 2017, A review of hydrotalcite-based catalysts for hydrogen production systems. Int J Hydrogen Energy 2017;42:19851e68. https://doi.org/10.1016/j.ijhydene.2017.06.089
  • Salkuyeh, Y. K., Saville, B. A. and MacLean, H. L., 2018, Technoeconomic analysis and life cycle assessment of hydrogen production from different biomass gasification processes. Int J Hydrogen Energy 2018;43:9514e28. https://doi.org/10.1016/j.ijhydene.2018.04.024
  • Baykara, S. Z., 2018, Hydrogen: a brief overview on its sources, production and environmental impact. Int J Hydrogen Energy 2018;43:10605e14. https://doi.org/10.1016/j.ijhydene.2018.02.022.
  • Duman, G., Akarsu, K., Yilmazer, A., Keskin, G. T., Azbar, N. and Yanik, J, 2018, Sustainable hydrogen production options from food wastes. Int J Hydrogen Energy 2018;43:10595e604. https://doi.org/10.1016/j.ijhydene.2017.12.146
  • Sinigaglia, T., Lewiski, F., Santos, M. M. E. and Mairesse, S. J. C., 2017, Production, storage, fuel stations of hydrogen and its utilisation in automotive applications-a review. Int J Hydrogen Energy 2017;42:24597e611. https://doi.org/10.1016/j.ijhydene.2017.08.063
  • Energy Statistics India, 2025. National Sample Survey, Ministry of Statistics and Programme Implementation, Government of India, https://mospi.gov.in, pp 193.
  • Kim, J., Jun, A., Gwon, O., Yoo, S., Liu, M. and Shin, J., 2018, Hybridsolid oxide electrolysis cell: a new strategy for efficient hydrogen production. Nano Energy, 44:121e6. https://doi.org/10.1016/j.nanoen.2017.11.074
  • Acar, C., and Dincer, I. (2019). Review and evaluation of hydrogen production options for a better environment. J Clean Prod 2019;218:835e49. https://doi.org/10.1016/j.jclepro.2019.02.046.
  • Notton, G., Nivet, M. L., Voyant, C., Paoli, C., Darras, C. and Motte, F., 2018, Intermittent and stochastic character of renewable energy sources: consequences, cost of intermittence and benefit of forecasting. Renew Sustain Energy Rev 2018;87:96e105. https://doi.org/10.1016 /j.rser.2018.02.007
  • Zhang, W., Maleki, A., Rosen, M. A. and Liu, J., 2019, Sizing a standalone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm. Energy Convers Manag 2019; 180:609e21. https://doi.org/10.1016/j.enconman.2018.08.102
  • Guandalini, G., Robinius, M., Grube, T., Campanari, S., Stolten, D., 2017, Long-term power-to-gas potential from wind and solar power: a country analysis for Italy. Int J Hydrogen Energy 2017;42:13389e406. https://doi.org/10.1016/j.ijhydene.2017.03.081
  • Ye, J. and Yuan, R., 2018, Stochastic scheduling of integrated electricity heat-hydrogen systems considering power-to-hydrogen and wind power. J Renew Sustain Energy 2018; 10:24104.
  • Rodriguez, C. C., & Kruse, A. (2018). Supercritical water gasification of biomass for hydrogen production: A review. J Supercrit Fluids 2018; 133:573e90. https://doi.org/10.1016/.supflu.2017.09.019
  • Lepage, T., Kammoun, M., Schmetz, Q. and Richel, A., 2021, Biomassto-hydrogen: a review of main routes of production, processes evaluation and techno-economic assessment. Biomass Bioenergy 2021; 144:105920. https://doi.org/10.1016/j.biombioe.2020.105920
  • Yongjun L., 2023, Transitioning to sustainable energy: Opportunities, challenges, and the potential of blockchain technology. Front. Energy Res. Sec. Sustain. Energy Syst. 2023, 11, DOI: https://doi.org/10.3389/fenrg. 2023.1258044