Published December 22, 2024 | Version v1
Journal article Open

Insights into thermal sensitivity: Effects of elevated temperature on growth, metabolic rate, and stress responses in Atlantic wolffish (Anarhichas lupus)

  • 1. Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden & The Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden
  • 2. Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden & The Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden & Blue Food, Center for Future Seafood, University of Gothenburg, Gothenburg, Sweden
  • 3. Department of Biological and Environmental Sciences University of Gothenburg, Gothenburg, Sweden

Description

Hinchcliffe, James, Roques, Jonathan A. C., Ekström, Andreas, Hedén, Ida, Sundell, Kristina, Sundh, Henrik, Sandblom, Erik, Björnsson, Björn Thrandur, Jönsson, Elisabeth (2025): Insights into thermal sensitivity: Effects of elevated temperature on growth, metabolic rate, and stress responses in Atlantic wolffish (Anarhichas lupus). Journal of Fish Biology 106 (1): 61-74, DOI: 10.1111/jfb.16017, URL: https://doi.org/10.1111/jfb.16017

Files

source.pdf

Files (1.2 MB)

Name Size Download all
md5:2841b8e37dfc912b3bf9f93c8e442bae
1.2 MB Preview Download

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:2841FFE3FFFC912BFFF9F93C8E44FFAE

References

  • Albertsson, E., Strand, A., Lindegarth, S., Sundell, K. S., & Eriksson, S. (2012). Marin fiskodling pa den svenska vastkusten : Biologiska forutsattningar.
  • Arnason ´, T., Gunnarsson, A ´., Steinarsson, A., Danielsdottir, A. K., & Bjornsson, B. T. (2019). Impact of temperature and growth hormone on growth physiology of juvenile Atlantic wolffish (Anarhichas lupus). Aquaculture, 504, 404-413. https://doi.org/10.1016/j.aquaculture. 2019.02.025
  • Barton, B. A. (2006). Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 42, 517-525. https://doi.org/10.1093/icb/42. 3.517
  • Bianucci, L., Fennel, K., Chabot, D., Shackell, N., & Lavoie, D. (2016). Ocean biogeochemical models as management tools: A case study for Atlantic wolffish and declining oxygen. ICES Journal of Marine Science, 73(2), 263-274. https://doi.org/10.1093/icesjms/fsv220
  • Bluemel, J. K., Fischer, S. H., Kulka, D. W., Lynam, C. P., & Ellis, J. R. (2022). Decline in Atlantic wolffish Anarhichas lupus in the North Sea: Impacts of fishing pressure and climate change. Journal of Fish Biology, 100(1), 253-267. https://doi.org/10.1111/jfb.14942
  • Boerrigter, J. G. J., van de Vis, H. W., van den Bos, R., Abbink, W., Spanings, T., Zethof, J., Martinez, L. L., van Andel, W. F. M., Lopez- Luna, J., & Flik, G. (2014). Effects of pro-Tex on zebrafish (Danio rerio) larvae, adult common carp (Cyprinus carpio) and adult yellowtail kingfish (Seriola lalandi). Fish Physiology and Biochemistry, 40, 1201-1212. https://doi.org/10.1007/s10695-014-9916-9
  • Brett, J. R. (1971). Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). American Zoologist, 113, 99- 113. https://doi.org/10.1093/icb/11.1.99
  • Brijs, J., Grans, A., Hjelmstedt, P., Sandblom, E., van Nuland, N., Berg, C., & Axelsson, M. (2018). In vivo aerobic metabolism of the rainbow trout gut and the effects of an acute temperature increase and stress event. The Journal of Experimental Biology, 221(14), jeb180703. https://doi. org/10.1242/jeb.180703
  • Chabot, D., Steffensen, J. F., & Farrell, A. P. (2016). The determination of standard metabolic rate in fishes. Journal of Fish Biology, 88(1), 81- 121. https://doi.org/10.1111/jfb.12845
  • Clark, T. D., Eliason, E. J., Sandblom, E., Hinch, S. G., & Farrell, A. P. (2008). Calibration of a hand-held haemoglobin analyser for use on fish blood. Journal of Fish Biology, 73(10), 2587-2595. https://doi.org/10.1111/j. 1095-8649.2008.02109.x
  • Clark, T. D., Sandblom, E., & Jutfelt, F. (2013). Aerobic scope measurements of fishes in an era of climate change: Respirometry, relevance and recommendations. The Journal of Experimental Biology, 216, 2771- 2782. https://doi.org/10.1242/jeb.084251
  • Estensoro, I., Ballester-Lozano, G., Benedito-Palos, L., Grammes, F., Martos-Sitcha, J. A., Mydland, L. T., Calduch-Giner, J. A., Fuentes, J., Karalazos, V., Ortiz, A ´., Overland, M., Sitja-Bobadilla, A., & Perez- Sanchez, J. (2016). Dietary butyrate helps to restore the intestinal status of a marine teleost (Sparus aurata) fed extreme diets low in fish meal and fish oil. PLoS One, 11, 1-21. https://doi.org/10.1371/journal. pone.0166564
  • Falconer, L., HjOllo, S. S., Telfer, T. C., McAdam, B. J., Hermansen, O., & Ytteborg, E. (2020). The importance of calibrating climate change projections to local conditions at aquaculture sites. Aquaculture, 514, 734487. https://doi.org/10.1016/j.aquaculture.2019.734487
  • Falk-Petersen, I. B., Hansen, T. K., Fieler, R., & Sunde, L. M. (1999). Cultivation of the spotted wolffish Anarhichas minor (Olafsen) - A new candidate for cold-water fish farming. Aquaculture Research, 30, 711-718. https://doi.org/10.1046/j.1365-2109.1999.00392.x
  • Fast, M. D., Hosoya, S., Johnson, S. C., & Afonso, L. O. B. (2008). Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish & Shellfish Immunology, 24, 194-204. https://doi.org/10.1016/j.fsi.2007.10.009
  • Foss, A., Imsland, A. K., Falk-Petersen, I. B., & Oiestad, V. (2004). A review of the culture potential of spotted wolffish Anarhichas minor Olafsen. Reviews in Fish Biology and Fisheries, 14, 277-294. https://doi.org/10. 1007/s11160-004-8360-9
  • Grans, A., Jutfelt, F., Sandblom, E., Jonsson, E., Wiklander, K., Seth, H., Olsson, C., Dupont, S., Ortega-Martinez, O., Einarsdottir, I., Bjornsson, B. T., Sundell, K., & Axelsson, M. (2014). Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut. The Journal of Experimental Biology, 217, 711-717. https://doi.org/10.1242/jeb.096743
  • Halsey, L. G., Killen, S. S., Clark, T. D., & Norin, T. (2018). Exploring key issues of aerobic scope interpretation in ectotherms: Absolute versus factorial. Reviews in Fish Biology and Fisheries, 28, 405-415. https:// doi.org/10.1007/s11160-018-9516-3
  • Hansen, T. K., & Falk-Petersen, I. B. (2002). Growth and survival of firstfeeding spotted wolffish (Anarhichas minor Olafsen) at various temperature regimes. Aquaculture Research, 33, 1119-1127. https://doi.org/ 10.1046/j.1365-2109.2002.00756.x
  • Hastings, R. A., Rutterford, L. A., Freer, J. J., Collins, R. A., Simpson, S. D., & Genner, M. J. (2020). Climate change drives poleward increases and equatorward declines in marine species. Current Biology, 30, 1572- 1577.e2. https://doi.org/10.1016/j.cub.2020.02.043
  • Healy, T. M., & Schulte, P. M. (2012). Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiological and Biochemical Zoology, 85(2), 107-119. https://doi.org/10.1086/664584
  • Heden, I. (2023). Integrative physiology as a tool towards good animal welfare and sustainability in aquaculture: Focus on intestinal function and health. PhD Thesis, University of Gothenburg.
  • Hellberg, H., & Bjerkas, I. (2000). The anatomy of the oesophagus, stomach and intestine in common wolffish (Anarhichas lupus L.): A basis for diagnostic work and research. Acta Veterinaria Scandinavica, 41, 283- 297. https://doi.org/10.1186/BF03549637
  • Jobling, M. A. (1997). Temperature and growth: Modulation of growth rate via temperature change. In Seminar series-society for experimental biology (Vol. 61, pp. 225-254). Cambridge University Press.
  • Jutfelt, F., Grans, A., Jonsson, E., Wiklander, K., Seth, H., Olsson, C., Dupont, S., Ortega-Martinez, O., Sundell, K., Axelsson, M., & Sandblom, E. (2014). Response to "How and how not to investigate the oxygen and capacity limitation of thermal tolerance (OCLTT) and aerobic scope - remarks on the article by Grans et al". The Journal of Experimental Biology, 217, 4433-4435. https://doi.org/10.1242/jeb. 115410
  • Jutfelt, F., Norin, T., Asheim, E. R., Rowsey, L. E., Andreassen, A. H., Morgan, R., Clark, T. D., & Speers-Roesch, B. (2021). Aerobic scope protection reduces ectotherm growth under warming. Functional Ecology, 35(7), 1397-1407. https://doi.org/10.1111/1365-2435.13811
  • Knudsen, D., Jutfelt, F., Sundh, H., Sundell, K., Koppe, W., & FrOkiaer, H. (2008). Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). The British Journal of Nutrition, 100, 120-129. https:// doi.org/10.1017/S0007114507886338
  • Knutsen, H. R., Johnsen, I. H., Keizer, S., SOrensen, M., Roques, J. A. C., Heden, I., Sundell, K., & Hagen, O. (2019). Fish welfare, fast muscle cellularity, fatty acid and body-composition of juvenile spotted wolffish (Anarhichas minor) fed a combination of plant proteins and microalgae (Nannochloropsis oceanica). Aquaculture, 506, 212-223. https:// doi.org/10.1016/j.aquaculture.2019.03.043
  • Koskela, J., Pirhonen, J., & Jobling, M. (1997). Feed intake, growth rate and body composition of juvenile Baltic salmon exposed to different constant temperatures. Aquaculture International, 5(4), 351-360. https:// doi.org/10.1023/A:1018316224253
  • Kulka, D. W., Simpson, M. R., & Hooper, R. G. (2004). Changes in distribution and habitat associations of Wolffish (Anarhichidae) in the grand banks and Labrador shelf. Canadian Science Advisory Secretariat Research Document, 113, 1-48.
  • Lays, N., Iversen, M. M. T., Frantzen, M., & JOrgensen, E. H. (2009). Physiological stress responses in spotted wolffish (Anarhichas minor) subjected to acute disturbance and progressive hypoxia. Aquaculture, 295, 126-133. https://doi.org/10.1016/j.aquaculture.2009.06.039
  • Le FranCois, N. R., Fairchild, E. A., Nardi, G., & Dupont-Cyr, B. A. (2021). The status of spotted wolffish, Anarhichas minor: A commercially ready species for US marine aquaculture? Journal of the World Aquaculture Society, 52(3), 509-525. https://doi.org/10.1111/jwas.12793
  • Le FranCois, N. R., Lemieux, H., & Blier, P. U. (2002). Biological and technical evaluation of the potential of marine and anadromous fish species for cold-water mariculture. Aquaculture Research, 33(2), 95-108. https://doi.org/10.1046/j.1365-2109.2002.00652.x
  • Le FranCois, N. R., Tremblay-Bourgeois, S., Dupont Cyr, B. A., Savoie, A., Roy, R. L., Imsland, A. K., & Benfey, T. J. (2013). Cortisol and behavioral response to handling (acute) and confinement (chronic) stressors in juvenile spotted Wolffish, Anarhichas minor. Journal of Applied Aquaculture, 25, 248-264. https://doi.org/10.1080/10454438.2013.815142
  • Loretz, C. A. (1995). Electrophysiology of ion transport in teleost intestinal cells. Fish Physiology and Biochemistry, 14, 25-56. https://doi.org/10. 1016/S1546-5098(08)60241-1
  • Malini, D. M., Apriliandri, A. F., & Arista, S. (2018). Increased blood glucose level on pelagic fish as response to environmental disturbances at East Coast Pangandaran, West Java. IOP Conference Series: Earth and Environmental Science, 166, 012011. https://doi.org/10.1088/1755-1315/ 166/1/012011
  • McArley, T. J., Hickey, A. J., & Herbert, N. A. (2017). Chronic warm exposure impairs growth performance and reduces thermal safety margins in the common triplefin fish (Forsterygion lapillum). The Journal of Experimental Biology, 220(19), 3527-3535. https://doi.org/10.1242/jeb. 162099
  • McCarthy, I., Moksness, E., & Pavlov, D. A. (1998). The effects of temperature on growth rate and growth efficiency of juvenile common wolffish. Aquaculture International, 6, 207-218. https://doi.org/10.1023/A: 1009202710566
  • McCormick, S. D. (1993). Methods for nonlethal gill biopsy and measurement of Na+, K+-ATPase activity. Canadian Journal of Fisheries and Aquatic Sciences, 50(3), 656-658. https://doi.org/10.1139/f93-075
  • Moksness, E. (1994). Growth rates of the common wolffish, Anarhichas lupus L., and spotted wolffish, A. Minor Olafsen, in captivity. Aquaculture Research, 25, 363-371. https://doi.org/10.1111/j.1365-2109. 1994.tb00701.x
  • Morgenroth, D., Ekstrom, A., Hjelmstedt, P., Grans, A., Axelsson, M., & Sandblom, E. (2019). Hemodynamic responses to warming in euryhaline rainbow trout: Implications of the osmo-respiratory compromise. The Journal of Experimental Biology, 222(17), jeb207522. https://doi. org/10.1242/jeb.207522
  • Olsen, R. E., Sundell, K., Mayhew, T. M., Myklebust, R., & RingO, E. (2005). Acute stress alters intestinal function of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture, 250, 480-495. https://doi.org/10. 1016/j.aquaculture.2005.03.014
  • Olsen, R. E., Sundell, K., RingO, E., Myklebust, R., Hemre, G. I., Hansen, T., & Karlsen, O. (2008). The acute stress response in fed and food deprived Atlantic cod, Gadus morhua L. Aquaculture, 280, 232- 241. https://doi.org/10.1016/j.aquaculture.2008.05.006
  • Pankhurst, N. W., & King, H. R. (2010). Temperature and salmonid reproduction: Implications for aquaculture. Journal of Fish Biology, 76, 69- 85. https://doi.org/10.1111/j.1095-8649.2009.02484.x
  • Pankhurst, N. W., King, H. R., & Ludke, S. L. (2008). Relationship between stress, feeding and plasma ghrelin levels in rainbow trout, Oncorhynchus mykiss. Marine and Freshwater Behaviour and Physiology, 41, 53-64. https://doi.org/10.1080/10236240701661156
  • Pavlov, D. A., & Moksness, E. (1997). Development of the axial skeleton in wolffish, Anarchichas lupus (Pisces, Anarchichadidae), at different temperatures. Environmental Biology of Fishes, 49, 401-416. https://doi. org/10.1023/A:1007352802352
  • Peck, L. S., Morley, S. A., Richard, J., & Clark, M. S. (2014). Acclimation and thermal tolerance in Antarctic marine ectotherms. The Journal of Experimental Biology, 217(1), 16-22. https://doi.org/10.1242/jeb.089946
  • Pichaud, N., Ekstrom, A., Hellgren, K., & Sandblom, E. (2017). Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout. The Journal of Experimental Biology, 220(9), 1674- 1683. https://doi.org/10.1242/jeb.152421
  • Portner, H. O. (2014). How and how not to investigate the oxygen and capacity limitation of thermal tolerance (OCLTT) and aerobic scope - Remarks on the article by Grans et al. The Journal of Experimental Biology, 217, 4432-4433. https://doi.org/10.1242/jeb.115410
  • Portner, H. O., & Farrell, A. P. (2008). Physiology and climate change. Science, 322, 690-692. https://doi.org/10.1126/science.1163156
  • Portner, H. O., & Peck, M. A. (2010). Climate change effects on fishes and fisheries: Towards a cause-and-effect understanding. Journal of Fish Biology, 77, 1745-1779. https://doi.org/10.1111/j.1095-8649.2010. 02783.x
  • Rindorf, A., Gislason, H., Burns, F., Ellis, J. R., & Reid, D. (2020). Are fish sensitive to trawling recovering in the Northeast Atlantic? Journal of Applied Ecology, 57(10), 1936-1947. https://doi.org/10.1111/1365- 2664.13693
  • Roques, J. A. C., Abbink, W., Geurds, F., van de Vis, H., & Flik, G. (2010). Tailfin clipping, a painful procedure: Studies on Nile tilapia and common carp. Physiology & Behavior, 101, 533-540. https://doi.org/10. 1016/j.physbeh.2010.08.00110.1086/688769
  • Sandblom, E., Clark, T. D., Grans, A., Ekstrom, A., Brijs, J., Sundstrom, L. F., Odelstrom, A., Adill, A., Aho, T., & Jutfelt, F. (2016). Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nature Communications, 7(1), 11447. https:// doi.org/10.1038/ncomms11447
  • Sandblom, E., Grans, A., Axelsson, M., & Seth, H. (2014). Temperature acclimation rate of aerobic scope and feeding metabolism in fishes: Implications in a thermally extreme future. Proceedings of the Royal Society B: Biological Sciences, 281(1794), 20141490. https://doi.org/ 10.1098/rspb.2014.1490
  • Seebacher, F., White, C. R., & Franklin, C. E. (2015). Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 5, 61-66. https://doi.org/10.1038/nclimate2457
  • Sundell, K., Jutfelt, F., Agustsson, T., Olsen, R. E., Sandblom, E., Hansen, T., & Bjornsson, B. T. (2003). Intestinal transport mechanisms and plasma cortisol levels during normal and out-of-season parr -smolt transformation of Atlantic salmon, Salmo salar. Aquaculture, 222(1-4), 265-285. https://doi.org/10.1016/S0044-8486(03)00127-3
  • Sundell, K. S., & Sundh, H. (2012). Intestinal fluid absorption in anadromous salmonids: Importance of tight junctions and aquaporins. Frontiers in Physiology, 3, 1-13. https://doi.org/10.3389/fphys.2012. 00388
  • Sundh, H., Calabrese, S., Jutfelt, F., Niklasson, L., Olsen, R. E., & Sundell, K. (2011). Translocation of infectious pancreatic necrosis virus across the intestinal epithelium of Atlantic salmon (Salmo salar L.). Aquaculture, 321, 85-92. https://doi.org/10.1016/j.aquaculture.2011.08.011
  • Sundh, H., Grans, A., Brijs, J., Sandblom, E., Axelsson, M., Berg, C., & Sundell, K. (2018). Effects of coeliacomesenteric blood flow reduction on intestinal barrier function in rainbow trout Oncorhynchus mykiss. Journal of Fish Biology, 93, 519-527. https://doi.org/10.1111/jfb. 13658
  • Sundh, H., Kvamme, B. O., Fridell, F., Olsen, R. E., Ellis, T., Taranger, G. L., & Sundell, K. (2010). Intestinal barrier function of Atlantic salmon (Salmo salar L.) post smolts is reduced by common sea cage environments and suggested as a possible physiological welfare indicator. BMC Physiology, 10, 22. https://doi.org/10.1186/1472- 6793-10-22
  • Sundh, H., Olsen, R. E., Fridell, F., Gadan, K., Evensen, O., Glette, J., Taranger, G. L., Myklebust, R., & Sundell, K. (2009). The effect of hyperoxygenation and reduced flow in fresh water and subsequent infectious pancreatic necrosis virus challenge in sea water, on the intestinal barrier integrity in Atlantic salmon, Salmo salar L. Journal of Fish Diseases, 32, 687-698. https://doi.org/10.1111/j.1365-2761. 2009.01047.x
  • Sundh, H., Finne-Fridell, F., Ellis, T., Taranger, G. L., Niklasson, L., Pettersen, E. F., Wergeland, H. I. & Sundell, K. (2019). Reduced water quality associated with higher stocking density disturbs the intestinal barrier functions of Atlantic salmon (Salmo salar L.). Aquaculture, 512, 734356.
  • Tremblay-Bourgeois, S., Le FranCois, N. R., Roy, R. L., Benfey, T. J., & Imsland, A. K. (2010). Effect of rearing density on the growth and welfare indices of juvenile spotted wolffish, Anarhichas minor (Olafsen). Aquaculture Research, 41, 1179-1189. https://doi.org/10.1111/j. 1365-2109.2009.02405.x
  • Venkatakrishnan, V., Padra, J. T., Sundh, H., Sundell, K., Jin, C., Langeland, M., Carlberg, H., Vidakovic, A., Lundh, T., Karlsson, N. G., & Linden, S. K. (2019). Exploring the Arctic Charr intestinal Glycome: Evidence of increased N-glycolylneuraminic acid levels and changed hostpathogen interactions in response to inflammation. Journal of Proteome Research, 18, 1760-1773. https://doi.org/10.1021/acs.jproteome. 8b00973
  • Vidakovic, A., Langeland, M., Sundh, H., Sundell, K., Olstorpe, M., Vielma, J., Kiessling, A., & Lundh, T. (2016). Evaluation of growth performance and intestinal barrier function in Arctic Charr (Salvelinus alpinus) fed yeast (Saccharomyces cerevisiae), fungi (Rhizopus oryzae) and blue mussel (Mytilus edulis). Aquaculture Nutrition, 22(6), 1348-1360. https://doi.org/10.1111/anu.12344
  • Wendelaar Bonga, S. E. (1997). The stress response in fish. Physiological Reviews, 77, 591-625. https://doi.org/10.1152/physrev.1997.77.3.591
  • Young, G. (1986). Cortisol secretion in vitro by the interrenal of coho salmon (Oncorhynchus kisutch) during smoltification relationship with plasma thyroxine and plasma cortisol. General and Comparative Endocrinology, 63(2), 191-200. https://doi.org/10.1016/0016-6480(86) 90156-5
  • Zanuzzo, F. S., Beemelmanns, A., Hall, J. R., Rise, M. L., & Gamperl, A. K. (2020). The innate immune response of Atlantic Salmon (Salmo salar) is not negatively affected by high temperature and moderate hypoxia. Frontiers in Immunology, 11, 1009. https://doi.org/10.3389/fimmu. 2020.01009