Published August 28, 2025 | Version V1.2
Publication Open

Quantization of nonlinear tensor field equations - Geometric structure-integral with action-based selection

Description

In Kaluza–Klein theory, the Lorentz force, Maxwell equations, and the electromagnetic energy-momentum tensor arise directly from the five-dimensional metric. This enables a virtually speculation-free approach to the quantization of nonlinear tensor field equations of Kaluza theory and general relativity using a generalization of Feynmans Integral with Einstein–Hilbert action.

In nonlinear cases, wave–particle duality extends to a duality of spacetime and non-metric phase manifold structure, yielding a picture closely related to quantum field theory.
Unlike the Feynman path integral, which maps the action integral to the phase of a wave function and remains gauge- and coordinate-dependent, the action integral itself is scalar and covariant. Direct quantization of this scalar action defines a structure integral with action-based selection and avoids the problems of interference and gauge.

Files

Quantization of nonlinear tensor field equations 28 Aug 2025_en_V1.2.pdf

Files (376.7 kB)

Additional details

Dates

Updated
2025-08-28
Quantization of nonlinear tensor field equations

References

  • Pieper, T. (2025). On the Complete Understanding of Kaluza's Theory through the Exhaustion of its Given Mathematical Structur (V1.4). Torsten Pieper. https://doi.org/10.5281/zenodo.15085549
  • Paul S. Wesson, James M. Overduin (1965): Principles of Space-Time-Matter. Towson University, USA & Johns Hopkins University, USA
  • A. D. Sakharov (1967): Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. Journal of Experimental and Theoretical Physics Letters.
  • Feynman, Morinigo, Wagner, Feynman Lectures on Gravitation (Kap. 3 ff.)
  • Pieper, T. (2025). Search for a discretization that leaves the structures of special and general Relativity largely intact (Version 1.0). Zenodo. https://doi.org/10.5281/zenodo.15333323
  • E.H. Kennard: Zur Quantenmechanik einfacher Bewegungstypen. In: Zeitschrift für Physik. Band 44, Nr. 4, 1927, S 326-352, https://doi.org/10.1007/BF01391200
  • Schindelbeck, T. (2025). Theodor Kaluza's Theory of Everything: revisited. https://doi.org/10.5281/zenodo.15778160