Monitoring of Livestock on Large-Scale Areas using Aerospace Data and IoT Technologies
- 1. Student, Department of System and Applied Programming, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent.
Contributors
Contact person:
- 1. Professor, Department of System and Applied Programming, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent.
- 2. Professor, Department of Information Technologies, Nukus State Technical University, Tashkent.
- 3. Student, Department of System and Applied Programming, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent.
- 4. Student, Department of Systems and Applied Programming, Tashkent University of Information Technologies, named after Muhammad al-Khwarizmi, Tashkent.
Description
Abstract: This article explores innovative solutions for developing a remote-control system to monitor cattle in vast, remote areas that are inaccessible to humans. The system, utilizing Internet of Things and geofencing technologies, enables farmers to reduce manual labor, track lost livestock, and effectively utilize pasture resources. Advanced technologies, including GPS, ultrasonic sensors, databases, antennas, and Arduino microcontrollers, were utilised in this system. Additionally, methods for assessing vegetation cover in pastures and their nutritional productivity using vegetation indices, such as NDVI, were also analysed. The research results show that the proposed solution enables increased efficiency in livestock management, as well as optimisation of energy and time costs. This, along with creating conveniences for farmers, will serve to improve the health and productivity of livestock.
Files
H111412080825.pdf
Files
(1.0 MB)
Name | Size | Download all |
---|---|---|
md5:9adc8198e6089c7e0751d425733958c5
|
1.0 MB | Preview Download |
Additional details
Identifiers
- DOI
- 10.35940/ijies.H1114.12080825
- EISSN
- 2319-9598
Dates
- Accepted
-
2025-08-15Manuscript received on 26 July 2025 | First Revised Manuscript received on 30 July 2025 | Second Revised Manuscript received on 05 August 2025 | Manuscript Accepted on 15 August 2025 | Manuscript published on 30 August 2025.
References
- Herrera, O., 2018. Comportamiento en pastoreo del ganado bovino criollo Argentino y aberdeen angus ecotipo Riojano, en pastizales naturales del chaco árido. Universidad Nacional del Mar de Plata. Universidad Nacional de Mar del Plata, Balcarce, Argentina, p. 94. https://repositorioslatinoamericanos.uchile.cl/handle/2250/6210205
- J.Plaza, C.Palacios, M.Sánchez-García, M.Criado, J.Nieto, N.Sánchez; Remote Sensing and Spatial Information Sciences, Volume XLIII-B4- 2020, https://DOI:10.5194/isprs-archives-XLIII-B4-2020-169-2020
- S.Oleinik, V.Skripkin, T.Lesnyak*, and D.Litvin, BIO Web of Conferences 66, 09007 (2023). https://doi.org/10.1051/bioconf/20236609007
- R. Catorci, L. Lulli, M. Malatesta, F. Tavoloni, and M. Tardella, Agric. Ecosyst. Environ., 314, 107372 (2021) https://doi:10.1016/j.agee.2021.107372.
- R.R. Fern, E.A. Foxley, A. Bruno, and M. L. Morrison, Ecol. Indic., 94, 16–21 (2018) https://doi:10.1016/j.ecolind.2018.06.029.
- Bailey, D. W. (2016). "Grazing and animal distribution," in Animal Welfare in Extensive Systems, eds J. J. Villalba and X. Manteca (Sheffield: 5M Publishing), 53–77. DOI:10.1093/tas/txx006
- Siebert, B., and Macfarlane, W. (1975). Dehydration in desert cattle and camels. Physiol. Zool. 48, 36–48. https://Doi:10.1086/physzool. 48.1.30155636
- Bailey, D. W., Trotter, M. G., Knight, C. W., and Thomas, M. G. (2018). Use of GPS tracking collars and accelerometers for rangeland livestock production research. Transl. Anim. Sci. 2, 81–88. https://doi:10.1093/tas/txx006
- Bailey, D. W. (2004). Management Strategies for Optimal Grazing Distribution and Use of Arid Rangelands. J. Anim. Sci. 82, E147–E153.
- Roath, L. R., and Krueger, W. C. (1982a). Cattle grazing and behavior on a forested range. J. Range Manage. 35, 332–338. https://doi:10.2307/3898312
- Bailey, D. W., VanWagoner, H. C., and Weinmeister, R. (2006). Individual animal selection has the potential to improve uniformity of grazing on foothill rangeland. Rangeland Ecol. Manage. 59, 351–358. https://doi:10.2111/04-165R2.1
- Bailey, D. W., Lunt, S., Lipka, A., Thomas, M. G., Medrano, J. F., Cánovas, A., et al. (2015). Genetic influences on cattle grazing distribution: association of genetic markers with terrain use in cattle. Rangeland Ecol. Manage. 68, 142–149. https://doi:10.1016/j.rama.2015.02.001
- Bailey, D. W., Kress, D. D., Anderson, D. C., Boss, D. L., and Miller, E. T. (2001). Relationship between terrain use and performance of beef cows grazing foothill rangeland. J. Anim. Sci. 79, 1883–1891. https://doi:10.2527/2001.7971883x
- Pierce, C. F., Speidel, S. E., Coleman, S. J., Enns, R. M., Bailey, D. W., Medrano, J. F., et al. (2020). Genome-wide association studies of beef cow terrain-use traits using Bayesian multiple-SNP regression. Livestock Sci. 232:103900. https://doi:10.1016/j.livsci.2019.103900
- Qazi Mudassar Ilyas and Muneer Ahmad, Volume 2020, Article ID 6660733, 12 pages https://doi.org/10.1155/2020/6660733
- D. B. Lindenmayer, W. Blanchard, M. Crane, D. Michael, and C. Sato, "Biodiversity benefits of vegetation restoration are undermined by livestock grazing," Restoration Ecology, vol. 26, no. 6, pp. 1157–1164, 2018. https://doi.org/10.1111/rec.12676
- Wolfger, B., Jones, B. W., Orsel, K., and Bewley, J. M. (2017). Technical note: evaluation of an ear-attached real-time location monitoring system. J. Dairy Sci. 100, 2219–2224. https://doi:10.3168/jds.2016-11527
- Sanchez-Iborra, R., Sanchez-Gomez, J., Ballesta-Viñas, J., Cano, M.-D., and Skarmeta, A. (2018). Performance Evaluation of LoRa Considering Scenario Conditions. Sensors 18:772. doi:10.3390/s18030772
- Habib ur Rehman, M., Jayaraman, P. P., Malik, S. U. R., Khan, A. U. R., and Medhat Gaber, M. (2017). Rededge: a novel architecture for big data processing in mobile edge computing environments. J. Sensor Actuator Netw. 6:17. https://doi:10.3390/jsan6030017
- Cheng, Y., Jiang, P., and Peng, Y. (2014). "Increasing big data front-end processing efficiency via locality sensitive bloom filter for elderly healthcare," in 2014 IEEE Symposium on Computational Intelligence in Big Data (CIBD), 1–8. doi: 10.1109/CIBD.2014.7011524
- García, R., Aguilar, J., Toro, M., Pinto, A., and Rodríguez, P. (2020). A systematic literature review on the use of machine learning in precision livestock farming. Comput. Electron. Agric. 179:105826. https://doi:10.1016/j.compag.2020.105826
- Hu, W., Gao, Y., Ha, K., Wang, J., Amos, B., Chen, Z., et al. (2016). "Quantifying the impact of edge computing on mobile applications," in Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems (New York, NY), 1–8. https://doi.org/10.1145/2967360.2967369
- Barwick, J., Lamb, D. W., Dobos, R., Welch, M., and Trotter, M. (2018). Categorising sheep activity using a tri-axial accelerometer. Comput. Electron. Agric. 145, 289–297. https://doi:10.1016/j.compag.2018.01.007