Published August 23, 2025
| Version v2
Preprint
Open
OrbitSort: A novel O(nlogn) Heuristic for the Traveling Salesman Problem
Creators
Description
To solve the Traveling Salesman Problem, proposed is a novel heuristic called
OrbitSort. The central idea being to impose a structure onto a series of points
and then leverage that structure to find the optimal path between n nodes
Files
OrbitSort (1).pdf
Files
(282.3 kB)
Name | Size | Download all |
---|---|---|
md5:cef38b6155928f7e0a4f94b4d6f6c493
|
279.9 kB | Preview Download |
md5:2d46103b205dc3326812fb3c1787cd60
|
2.4 kB | Download |
Additional details
References
- Applegate, D., Bixby, R., Chv´atal, V., Cook, W. (2007). The traveling salesman problem: A computational study. Princeton University Press.
- Arora, S. (1998). Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM, 45(5), 753–782.
- Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2009). Introduc tion to algorithms (3rd ed.). MIT Press.
- Johnson, D. S., McGeoch, L. A. (1997). The traveling salesman problem: A case study. In E. H. L. Aarts J. K. Lenstra (Eds.), Local search in combinatorial optimization (pp. 215–310). Princeton University Press.
- Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., Shmoys, D. B. (1985). The traveling salesman problem: A guided tour of combinatorial optimization. Wiley.
- Papadimitriou, C. H., Steiglitz, K. (1998). Combinatorial optimization: Algorithms and complexity (2nd ed.). Dover Publications