Published August 20, 2025 | Version v1.0.0-zenodo2
Software Open

sck-at-ucy/kbeta-transformer2d: Title: v1.0.0 – First public release (w/ Zenodo trigger)

Authors/Creators

Description

πŸš€ Release v1.0.0 – kbeta-transformer2d

Companion code for the paper "Kourkoutas-Ξ²: A Sunspike-Driven Adam Optimizer with Desert Flair" (arXiv:2508.12996).

This release delivers the full 2-D Heat-Diffusion Transformer workload used in the experiments, packaged for easy installation via PyPI and reproducibility in research.

Note: This release is identical to v1.0.0.
Published only to trigger Zenodo archiving and DOI minting.

✨ Highlights

  • End-to-end Transformer benchmark for spatial–temporal diffusion problems.
  • Tight integration with Kourkoutas-Ξ² (see kbeta):
    • Drop-in optimizer swap with --optimizer=kourkoutas.
    • Sun-spike / Ξ²β‚‚ diagnostics enabled via CLI flags (--collect_spikes).
  • Dual masking modes: autoregressive (causal) and full-context (block).
  • RoPE positional encoding option for better long-horizon extrapolation.
  • Quantization-ready: all dense/conv projections use mlx.nn.quantize_lin.
  • Lightweight footprint: Paper config β‰ˆ 32 M parameters (24 layers, 16 heads). Runs comfortably on a single Apple Silicon GPU (Mac Studio).
  • Configurable learning-rate schedules:
    • Explicit step schedule via learning_rate_schedule (used in the paper).
    • Fallback to cosine schedule controlled by init_lr, target_lr, and ramp_steps.

πŸ“¦ Installation

Option 1 β€” PyPI wheels (end-users):

pip install kbeta-transformer2d

Dev extras:

pip install "kbeta-transformer2d[dev]"

Exact paper reproducibility (pinned deps, MLX 0.26.3):

pip install "kbeta-transformer2d[repro]"

Option 2 β€” Clone for research/contribution:

git clone https://github.com/sck-at-ucy/kbeta-transformer2d.git
cd kbeta-transformer2d
python -m venv .venv && source .venv/bin/activate
pip install -e ".[dev]"

πŸ›  Quick start

Run smoke-tests:

pytest -q

Train with packaged defaults:

python -m kbeta_transformer2d.demo_heat2d heat2d.yml --epochs=5 --optimizer=adam95

Use explicit output directory:

python -m kbeta_transformer2d.demo_heat2d heat2d.yml   --epochs=5 --optimizer=kourkoutas   --override storage.outdir="./OUTPUTS/run_demo"

πŸ“‚ Project layout

kbeta-transformer2d
β”œβ”€β”€ src/kbeta_transformer2d/   # source
β”œβ”€β”€ configs/                   # YAML configs (default, paper, quick-test)
β”œβ”€β”€ tests/                     # smoke tests
└── assets/                    # figures for README

πŸ”— Related resources

πŸ“– Citation

If you use this work, please cite:

Paper:

@article{Kassinos2025Kourkoutas,
  title   = {Kourkoutas-Ξ²: A Sunspike-Driven Adam Optimizer with Desert Flair},
  author  = {Stavros Kassinos},
  journal = {arXiv preprint arXiv:2508.12996},
  year    = {2025},
  url     = {https://arxiv.org/abs/2508.12996}
}

Software (Zenodo DOI once minted):

@software{kassinos2025transformer2d,
  author       = {Stavros Kassinos},
  title        = {kbeta-transformer2d: 2-D Heat-Diffusion Transformer – Companion Code},
  year         = 2025,
  publisher    = {Zenodo},
  version      = {1.0.0},
  doi          = {10.5281/zenodo.xxxxxxx},
  url          = {https://doi.org/10.5281/zenodo.xxxxxxx}
}

⚑️ v1.0.0 is the first public release β€” stable, tested (wheel + editable installs), and ready for both research reproduction and practical experimentation.

Files

sck-at-ucy/kbeta-transformer2d-v1.0.0-zenodo2.zip

Files (2.1 MB)

Additional details