Code for manuscript: "Scarce Data, Noisy Inferences, and Overfitting: The Hidden Flaws in Ecological Dynamics Modelling"
Authors/Creators
Description
Code for manuscript: “Scarce Data, Noisy Inferences, and Overfitting: The Hidden Flaws in Ecological Dynamics Modeling”
Python codes
Codes that implement model reduction for the generalized lotka volterra model
Installation
- Create and environment
cd python
python -m venv mbam_venv
Activate it
source mbam_venv/bin/activate
Upgrade pip, just in case
pip install --upgrade pip
Install required packages
pip install -r requirements.txt
Run one example
python fourpop_mbam_reduction.py
R codes
We simulate the deterministic generalized Lotka-Volterra model using the R library deSolve. For inference, the state-of-art-bayesian engine, stan.
All the auxiliary functions are packed in file R/lotka_volterra_stan_functions.R. The file R/batch_434.R illustrates how to choose a seed (434 in this case), noise levels and population sizes to reproduce the figures in the article. This script calls R/lotka_volterra_rk4_stan.R that makes the bayesian inference.
Required libraries: deSolve, rstan, ggplot2, psych, deSolve, rstan, ggplot2, psych, bayesplot.
Files
fourpop_0_exp_figure.pdf
Files
(27.4 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:be699c369742206d6d4f2ec1f07b504c
|
76 Bytes | Download |
|
md5:fec3b2ed4259bee941ac659f831ca1dd
|
1.6 kB | Download |
|
md5:ee3abc8453a185fc31396aea9e513e3a
|
546 Bytes | Download |
|
md5:9ace85a3fd942d080dbf1dfa193015fc
|
4.7 kB | Download |
|
md5:96ee1ead0c46c8f5dbf703748ed6de89
|
1.2 kB | Download |
|
md5:383b8f1a022c7c683d2d59c6ccc61f1a
|
886 Bytes | Download |
|
md5:4a2ddd658d297dd701d97feb2a3364ea
|
39.1 kB | Preview Download |
|
md5:659268af203ee00e90e5bb86c518bdec
|
47.6 kB | Download |
|
md5:edfe7229045d8629a0d27b190bb527fb
|
405 Bytes | Download |
|
md5:0e921b883d3fc54af69af3730810ba09
|
2.6 kB | Download |
|
md5:e4f40b0b22b3f6c8c0b69d080ef40837
|
6.1 kB | Download |
|
md5:c7dc442965f2f0cde7803eec2e059ead
|
10.7 kB | Preview Download |
|
md5:b8cda7969fe1c2f5a4aa7a5edc27949c
|
4.8 kB | Download |
|
md5:c5b424b8b7e87e37096bebe60ae3855a
|
20.4 MB | Download |
|
md5:b8e6fc0815e40d943637a60610d2bd95
|
1.9 kB | Download |
|
md5:dda20cfd0985a06038b854db31e677cf
|
15.0 kB | Download |
|
md5:448d81de35b8d63345a8358218be1a80
|
6.5 kB | Download |
|
md5:d67c5f0d81a208e3873e55cd86e6c026
|
21.3 kB | Download |
|
md5:d5f33854b03600167d4e965c6451f535
|
6.3 MB | Preview Download |
|
md5:50b514a86ed2558ddac6859e6abc4b3f
|
1.9 kB | Download |
|
md5:0d210aafe1f423342e73c4eae925f9ac
|
5.5 kB | Preview Download |
|
md5:dd1b91aeb423f097ef36d86f5b8a9896
|
8.9 kB | Preview Download |
|
md5:61e8b4f572f679974f766e4d73344ac2
|
142.2 kB | Preview Download |
|
md5:e174153fc260180503681a61a933f91c
|
1.2 kB | Preview Download |
|
md5:3ae4f13c00b4b3323d52a786a3cdc604
|
60.9 kB | Download |
|
md5:b340c403753149dd8132745af91a3f6d
|
224 Bytes | Preview Download |
|
md5:b70581ab580f9b7d2cae0863b96251c1
|
253 Bytes | Download |
|
md5:1f8a6e647b70fa3947b041cb6692a1a7
|
78.9 kB | Preview Download |
|
md5:e30c704b9e1b178fb10ed3ecb54e4752
|
8.6 kB | Preview Download |
|
md5:83e3b1b88dbb0e959d95d8e233a1846b
|
145.3 kB | Preview Download |
|
md5:7c950dda804e6a78c434a6169b584357
|
1.3 kB | Download |
Additional details
Identifiers
- Other
- In press
Related works
- Is supplement to
- Journal article: In press (Other)
Dates
- Accepted
-
2025-08-05
References
- Scarce Data, Noisy Inferences, and Overfitting: The Hidden Flaws in Ecological Dynamics Modelling, Journal of the Royal Society Interface