Ultraparallelism Constructive Methods. From P to CC.
Creators
Description
Nowadays, computational processes tend to be more **parallelizable**, especially those that are **polynomially bounded**, enabling the budgeting of computer architectures and networks capable of meeting non-functional requirements. This allows for posing a vast array of **efficient problems** that, leveraging a robust computer network, can be resolved almost **instantaneously**. This very function is that of consciousness which, trapped in a kind of idealism, perceives itself as the sole possessor of general dominance. This article aims to provide an exceptionally clear understanding of these concepts and the applicability of various **transformations**. These transformations will not only allow us to map a **P-complete problem into CC (Comparator Circuit Class)**, given the demonstrated equivalence of CC and P, but will also be capable of **estimating** the number of solutions computed by a **nondeterministic Turing machine** in logarithmic time, provided the role of the verb 'to estimate' is accepted.
Files
Ultraparallelism Constructive Methods. From P to CC.pdf
Files
(321.9 kB)
Name | Size | Download all |
---|---|---|
md5:5204e10d17564c201c452a8bf09b04b4
|
321.9 kB | Preview Download |
Additional details
Related works
- Cites
- Annotation collection: https://medium.datadriveninvestor.com/hard-life-for-a-rebellious-mind-2ea7693ebfe0 (URL)
- Technical note: https://archive.org/details/mainIdeas/AnexosExplicativosEnCastellano/page/n7/mode/2up (URL)
- Publication: 10.4236/jcc.2022.1010009 (DOI)
- Software documentation: https://archive.org/details/satenon2logn/page/n5/mode/2up (URL)
- Technical note: https://archive.org/download/QuadraticAssingmentProblem (URL)
Software
References
- Anderson, J. H., Mayr, E. W., & Warmuth, M. K. (1989). Parallel approximation algorithm for bin packing. _Algorithmica, 4_(2), 191–213.
- Anderson, R. J. (1987). Some observations on P-completeness. In _Proceedings of the IEEE Symposium on Foundations of Computer Science_ (pp. 43–52).
- Arora, S., & Barak, B. (2009). _Computational Complexity: A Modern Approach_. Cambridge University Press.
- Bahi, J. M., Contassot-Vivier, S., & Couturier, R. (2008). _Parallel Iterative Algorithms: From Sequential to Grid Computing_. Chapman & Hall/CRC
- Blelloch, G. (1990). *Prefix Sums and Their Applications*. TR CMU-CS-90-190
- Borodin, A. (1977). On relating time and space to size and depth. _SIAM Journal on Computing, 6_(4), 733–744.
- Brent, R. P. (1974). "The Parallel Evaluation of General Arithmetic Expressions." _Journal of the ACM_, 21(2), 201-206. [https://doi.org/10.1145/321812.321815](https://doi.org/10.1145/321812.321815)
- Cole, R. & Vishkin, U. (1986). *Deterministic Coin Tossing and accelerating cascades: micro and macro techniques for designing parallel algorithms*. FOCS '86. [https://dl.acm.org/doi/pdf/10.1145/12130.12151](https://dl.acm.org/doi/pdf/10.1145/12130.12151)
- Cook, S. A. (1971). The complexity of theorem proving procedures. In _Proceedings of the Third Annual ACM Symposium on Theory of Computing_ (pp. 151–158)
- Cook, S. A. (1973). An observation on time-storage trade off. In _Fifth Annual ACM Symposium on Theory of Computing_ (pp. 29-33).
- Cook, S. A. (1975). The circuit value problem is log space complete for P. _SIGACT News, 7_(1), 18–20.
- Cook, S. A. (1985). A taxonomy of problems with fast parallel algorithms. _Information and Control, 64_(1-3), 2–22
- Feder, T., Plotkin, S., & Tardos, É. (1991). A Sublinear Parallel Algorithm for Stable Matching. In _Proceedings of the 23rd Annual ACM Symposium on Theory of Computing_ (pp. 51-60)
- Fischer, M. J., & Pippenger, N. (1979). "Relations Among Complexity Measures". _Journal of the ACM_, 26(2), 361–381. DOI: [10.1145/322123.322138](https://doi.org/10.1145/322123.322138)
- Galil, Z. (1974). Two way deterministic pushdown automaton languages and some open problems in the theory of computation. In _15th Annual Symposium on Switching and Automata Theory_ (pp. 170-177)
- Garey, M. R., & Johnson, D. S. (1979). _Computers and Intractability: A Guide to the Theory of NP-Completeness_. W. H. Freeman and Company
- Goldreich, O. (2001). _Foundations of Cryptography: Basic Tools_. Cambridge University Press
- Goldschlager, L. M., Shaw, R. A., & Staples, J. (1982). The maximum flow problem is log space complete for P. _Theoretical Computer Science, 21_(1), 105–111
- Greenlaw, R., Hoover, H. J., & Ruzzo, W. L. (1995). _Limits to Parallel Computation: P-Completeness Theory_. Morgan Kaufmann Publishers.
- Immerman, N. (1988). Nondeterministic space is closed under complementation. _SIAM Journal on Computing, 17_(5), 935–938.
- JaJa, J. (1992). *An Introduction to Parallel Algorithms*. SIAM J. Comput.
- Johnson, D. S. (1990). A Catalog of Complexity Classes. In J. van Leeuwen (Ed.), _Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity_ (pp. 67–164). MIT Press.
- Jones, N. D. (1975). Space-bounded reducibility among combinatorial problems. _Journal of Computer and System Sciences, 11_(1), 68–85.
- Karp, R. M. (1972). Reducibility among combinatorial problems. In _Complexity of Computer Computations_ (pp. 85–103). Plenum Press
- Karp, R. M., & Ramachandran, V. (1990). Parallel Algorithms for Shared-memory Machines. In J. van Leeuwen (Ed.), _Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity_ (pp. 869–941). MIT Press.
- Ladner, R. E. (1975). The circuit value problem is log space complete for P. _SIGACT News, 7_(1), 18–20. DOI: [10.1145/990518.990519](https://doi.org/10.1145/990518.990519)
- Mayr, E. W., & Subramanian, A. (1989). The Complexity of the Comparator Circuit Value Problem. In _Proceedings of the ACM Symposium on Parallel Algorithms and Architectures_ (pp. 248-257)
- Miller, R., & Stout, Q. F. (1991). _Parallel Algorithms for Regular Architectures: Mesh, Pyramid, and Hypercube_. MIT Press
- Papadimitriou, C. H. (1994). _Computational Complexity_. Addison-Wesley.
- Ruzzo, W. L. (1980). Tree-size bounded alternation. _Journal of Computer and System Sciences, 21_(2), 218–235
- Sipser, M. (2012). _Introduction to the Theory of Computation_ (3rd ed.). Cengage Learning.
- Skiena, S. S. (2008). _The Algorithm Design Manual_ (2nd ed.). Springer-Verlag London Limited.
- Subramanian, A. (1989). _A New Approach to Stable Matching Problems_. Report No. STAN-CS-89-1275, Stanford University, Department of Computer Science.
- Szelepcsényi, R. (1988). The method of forced enumeration for nondeterministic automata. _Acta Informatica, 26_(3), 279–284.
- Tardos, É. (1989). A strongly polynomial minimum cost circulation algorithm. _Algorithmica, 4_(2), 191–213.
- Tarjan, R. E., & Vishkin, U. (1984). Finding biconnected components and computing tree functions in logarithmic parallel time. In _25th Annual Symposium on Foundations of Computer Science_ (pp. 12–20)