Phases of Interacting Fibonacci Anyons on a Ladder at Half-Filling
Description
Two-dimensional many-body quantum systems can exhibit topological order and support collective excitations with anyonic statistics different from the usual fermionic or bosonic ones. With the emergence of these exotic point-like particles, it is natural to ask what phases can arise in interacting many-anyon systems. To study this topic, we consider the particular case of Fibonacci anyons subject to an anyonic tight-binding model with nearest-neighbor repulsion on a two-leg ladder. Focusing on the case of half-filling, for low interaction strengths an ``anyonic'' metal is found, whereas for strong repulsion, the anyons form an insulating charge-density wave. Within the latter regime, we introduce an effective one-dimensional model up to sixth order in perturbation theory arising from anyonic superexchange processes. We numerically identify four distinct phases of the effective model, which we characterize using matrix product state methods. These include both the ferro- and antiferromagnetic golden chain, a $\mathbb{Z}_2$ phase and an incommensurate phase.