Sepsis Associated Encephalopathy: Pathology, Diagnosis and Therapeutic Interventions
Creators
- 1. Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Lucknow (U.P.), India.
- 1. Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Lucknow (U.P.), India.
Description
Abstract: Sepsis, a potentially lethal organ dysfunction caused by dysregulated host response to infection, occurs in more than 30 million patients annually worldwide. Sepsis-associated encephalopathy (SAE) is an early and common complication, manifesting as acute delirium and coma, and often resulting in long-term cognitive dysfunction. This review distils current knowledge of the intricate pathophysiology of sepsis-induced brain dysfunction. The aetiology is multifactorial, resulting from a severe systemic inflammatory response that compromises the blood-brain barrier (BBB) and permits peripheral inflammatory mediators to access the central nervous system. This initiates severe neuroinflammation through microglial and astrocytic activation, accompanied by oxidative stress, resulting in severe mitochondrial dysfunction and a state of "cytopathic hypoxia". In addition, sepsis causes severe dysregulation of key neurotransmitter systems, including excitotoxic glutamate accumulation and dysfunctional cholinergic transmission, and disrupts hormonal homeostasis via the hypothalamic-pituitaryadrenal (HPA) axis. Despite these elaborate descriptions, diagnostic strategies for SAE remain primarily based on clinical examination, and therapeutic interventions are limited to treating the underlying sepsis. This decision is underpinned by controversy regarding adjunctive treatments, such as corticosteroids and sedation. This review identifies the imperative requirement for specific diagnostic biomarkers and neuroprotective interventions to reduce the high morbidity and mortality of SAE and post-sepsis cognitive dysfunction.
Files
E408605050825.pdf
Files
(516.3 kB)
Name | Size | Download all |
---|---|---|
md5:4ceb7e4b7c2b9c7e017eb308bb77e7ec
|
516.3 kB | Preview Download |
Additional details
Identifiers
- DOI
- 10.54105/ijapsr.E4086.04030424
- EISSN
- 2582-7618
Dates
- Accepted
-
2024-04-15Manuscript received on 25 February 2024 | Revised Manuscript received on 18 March 2024 | Manuscript Accepted on 15 April 2024 | Manuscript published on 30 April 2024.
References
- Hotchkiss, R. S. et al. Sepsis and septic shock. Nat. Rev. Dis. Primers 2, 16045 (2016).
- Widmann, C. N. & Heneka, M. T. Long-term cerebral consequences of sepsis. Lancet Neurol. 13, 630–636 (2014). https://doi.org/10.1038/nrdp.2016.45
- Sonneville, R. et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy: Intensive Care Med. 43, 1075–1084 (2017). https://doi.org/10.1007/s00134-017-4807-z
- Calsavara, A. J., Nobre, V., Barichello, T. & Teixeira, A. L. Post-sepsis cognitive impairment and associated risk factors: a systematic review. Aust. Crit. Care 31, 242–253 (2018). https://doi.org/10.1016/j.aucc.2017.06.001
- Pan, S. et al. Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment. Oxid. Med. Cell. Longev. 2022, 1328729 (2022). https://doi.org/10.1155/2022/1328729
- Gofton, T. E. & Young, G. B. Sepsis-associated encephalopathy. Nat. Rev. Neurol. 8, 557–566 (2012). https://doi.org/10.1038/nrneurol.2012.183
- Evans, L. et al. Executive summary: Surviving Sepsis Campaign: International Guidelines for the Management of Sepsis and Septic Shock 2021. Crit. Care Med. 49, 1974–1982 (2021). https://doi.org/10.1097/ccm.0000000000005357
- Czempik, P. F., Pluta, M. P. & Krzych, Ł. J. Sepsis-associated brain dysfunction: a review of current literature. Int. J. Environ. Res. Public Health 17, 5852 (2020). https://doi.org/10.3390/ijerph17165852
- Sekino, N., Selim, M. & Shehadah, A. Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J. Neuroinflammation 19, 101 (2022). https://doi.org/10.1186/s12974-022-02464-4
- Singh, J., Lee, Y. & Kellum, J. A. A new perspective on NO pathway in sepsis and ADMA lowering as a potential therapeutic approach. Crit. Care 26, 246 (2022). https://doi.org/10.1186/s13054-022-04075-0
- Chaudhry, N., & Duggal, A. K. Sepsis-associated encephalopathy. Adv. Med. 2014, 762320 (2014). https://doi.org/10.1155/2014/762320
- Raia, L. & Zafrani, L. Endothelial activation and microcirculatory disorders in sepsis. Front. Med. (Lausanne) 9, 907992 (2022). https://doi.org/10.3389/fmed.2022.907992
- Peng, X., Luo, Z., He, S., Zhang, L. & Li, Y. Blood-brain barrier disruption by lipopolysaccharide and sepsis-associated encephalopathy. Front. Cell. Infect. Microbiol. 11, 768108 (2021). https://doi.org/10.3389/fcimb.2021.768108
- Warford, J., Lamport, A. C., Kennedy, B. & Easton, A. S. Human brain chemokine and cytokine expression in sepsis: a report of three cases. Can. J. Neurol. Sci. 44, 96–104 (2017). https://doi.org/10.1017/cjn.2016.310
- Moraes, C. A. et al. Neuroinflammation in sepsis: molecular pathways of microglia activation. Pharmaceuticals 14, 416 (2021). https://doi.org/10.3390/ph14050416
- Song, K. et al. Oxidative stress-mediated disruption of the blood-brain barrier (BBB) in neurological diseases. Oxid. Med. Cell. Longev. 2020, 4356386 (2020). https://doi.org/10.1155/2020/4356386
- Abbott, N. J., Rönnbäck, L. & Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006). https://doi.org/10.1038/nrn1824
- Gao, Q. & Hernandes, M. S. Sepsis-associated encephalopathy and blood-brain barrier dysfunction. Inflammation 44, 2143–2150 (2021). https://doi.org/10.1007/s10753-021-01501-3
- Harada, K. et al. Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells. Lab. Invest. 83, 1657–1667 (2003). https://doi.org/10.1097/01.lab.0000097190.56734.fe
- Lin, C. C., Hsieh, H. L., Shih, R. H., Chi, P. L., Cheng, S. E. & Yang, C. M. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPKdependent NF-κB pathway in mouse brain microvascular endothelial cells. Cell Commun. Signal. 11, 1–4 (2013). https://doi.org/10.1186/1478-811x-11-8
- Ren, C., Yao, R. Q., Zhang, H., Feng, Y. W. & Yao, Y. M. Sepsisassociated encephalopathy: a vicious cycle of immunosuppression. J. Neuroinflammation 17, 1–5 (2020). https://doi.org/10.1186/s12974-020-1701-3
- Pool, R., Gomez, H. & Kellum, J. A. Mechanisms of organ dysfunction in sepsis. Crit. Care Clin. 34, 63–80 (2018). https://doi.org/10.1016/j.ccc.2017.08.003
- Koutroulis, I. et al. Sepsis immunometabolism: from defining sepsis to understanding how energy production affects immune response. Crit. Care Explor. 1, e0061 (2019). https://doi.org/10.1097/cce.0000000000000061
- Exline, M. C. & Crouser, E. D. Mitochondrial dysfunction during sepsis: still more questions than answers. Crit. Care Med. 39, 1216– 1217 (2011). https://doi.org/10.1097/CCM.0b013e31821487cb
- Wesselink, E., Koekkoek, W. A., Grefte, S., Witkamp, R. F. & Van Zanten, A. R. Feeding mitochondria: potential role of nutritional components to improve critical illness convalescence. Clin. Nutr. 38, 982–995 (2019). https://doi.org/10.1016/j.clnu.2018.08.032
- Singer, M. Critical illness and flat batteries. Crit. Care 21, 69–73 (2017). https://doi.org/10.1186/s13054-017-1913-9
- Nagar, H., Piao, S. & Kim, C. S. Role of mitochondrial oxidative stress in sepsis. Acute Crit. Care 33, 65 (2018). https://doi.org/10.4266/acc.2018.00157
- Supinski, G. S., Schroder, E. A. & Callahan, L. A. Mitochondria and critical illness. Chest 157, 310–322 (2020). https://doi.org/10.1016/j.chest.2019.08.2182
- Guo, C., Sun, L., Chen, X. & Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res. 8, 2003– 2014 (2013). https://doi.org/10.3969/j.issn.1673-5374.2013.21.009
- Tang, C., Jin, Y. & Wang, H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy. Front. Synaptic Neurosci. 14, 1054605 (2022). https://doi.org/10.3389/fnsyn.2022.1054605
- Xie, Z. et al. Inhibition of ferroptosis attenuates glutamate excitotoxicity and nuclear autophagy in a CLP septic mouse model. Shock 57, 694–702 (2022). https://doi.org/10.1097/shk.0000000000001893
- Wu, Q., Zhao, Y., Chen, X., Zhu, M. & Miao, C. Propofol attenuates BV2 microglia inflammation via NMDA receptor inhibition. Can. J. Physiol. Pharmacol. 96, 241–248 (2018). https://doi.org/10.1139/cjpp2017-0243
- Toklu, H. Z. et al. The effects of riluzole on neurological, brain biochemical, and histological changes in early and late term of sepsis in rats. J. Surg. Res. 152, 238–248 (2009). https://doi.org/10.1016/j.jss.2008.03.013
- Báez-Pagán, C. A., Delgado-Vélez, M. & Lasalde-Dominicci, J. A. Activation of the macrophage α7 nicotinic acetylcholine receptor and control of inflammation. J. Neuroimmune Pharmacol. 10, 468–476 (2015). https://doi.org/10.1007/s11481-015-9601-5
- Field, R. H., Gossen, A. & Cunningham, C. Prior pathology in the basal forebrain cholinergic system predisposes to inflammation-induced working memory deficits: reconciling inflammatory and cholinergic hypotheses of delirium. J. Neurosci. 32, 6288–6294 (2012). https://doi.org/10.1523/jneurosci.4673-11.2012
- Mitsuyama, Y. et al. Sepsis-associated hypoglycemia on admission is associated with increased mortality in intensive care unit patients. Acute Med. Surg. 9, e718 (2022). https://doi.org/10.1002/ams2.718
- Wang, J., Zhu, C. K., Yu, J. Q., Tan, R. & Yang, P. L. Hypoglycemia and mortality in sepsis patients: a systematic review and meta-analysis. Heart Lung 50, 933–940 (2021). https://doi.org/10.1016/j.hrtlng.2021.07.017
- Peeters, B. et al. Adrenocortical function during prolonged critical illness and beyond: a prospective observational study. Intensive Care Med. 44, 1720–1729 (2018). https://doi.org/10.1007/s00134-018- 5366-7
- Boonen, E. et al. Reduced cortisol metabolism during critical illness. N. Engl. J. Med. 368, 1477–1488 (2013). https://doi.org/10.1056/nejmoa1214969
- Van den Berghe, G., Teblick, A., Langouche, L. & Gunst, J. The hypothalamic-pituitary-adrenal axis in sepsis- and hyperinflammationinduced critical illness: gaps in current knowledge and future translational research directions. EBioMedicine 84, 104251 (2022). https://doi.org/10.1016/j.ebiom.2022.104284
- Boonen, E. et al. Reduced nocturnal ACTH-driven cortisol secretion during critical illness. Am. J. Physiol. Endocrinol. Metab. 306, E883– E892 (2014). https://doi.org/10.1152/ajpendo.00009.2014
- Téblick, A. et al. The role of pro-opiomelanocortin in the ACTH– cortisol dissociation of sepsis. Crit. Care 25, 1–4 (2021). https://doi.org/10.1186/s13054-021-03475-y
- Jenniskens, M. et al. The hepatic glucocorticoid receptor is crucial for maintaining cortisol homeostasis and for survival in sepsis in humans and male mice. Endocrinology 159, 2790–2802 (2018). https://doi.org/10.1210/en.2018-00344
- Miller, A. H., Haroon, E., Raison, C. L. & Felger, J. C. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress— anxiety 30, 297–306 (2013). https://doi.org/10.1002/da.22084
- Taccone, F. S. et al. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit. Care 14, R140 (2010). https://doi.org/10.1186/cc9205
- Elmore, M. R. et al. Colony-stimulating factor 1 receptor signalling is necessary for microglial viability, indicating the presence of microglial progenitor cells in the adult brain. Neuron 82, 380–397 (2014). https://doi.org/10.1016/j.neuron.2014.02.040
- Martin, G. S., Mannino, D. M., Eaton, S. & Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546–1554 (2003). https://doi.org/10.1056/nejmoa022139
- Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J. & Prescott, H. C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324, 782–793 (2020). https://doi.org/10.1001/jama.2020.12839
- Prescott, H. C. & Angus, D. C. Enhancing recovery from sepsis: a review. JAMA 319, 62–75 (2018). https://doi.org/10.1001/jama.2017.17687
- Hill, A. R. & Spencer-Segal, J. L. Glucocorticoids and the brain after critical illness. Endocrinology 162, bqaa242 (2021). https://doi.org/10.1210/endocr/bqaa242
- Keh, D. et al. Effect of hydrocortisone on development of shock among patients with severe sepsis: the HYPRESS randomized clinical trial. JAMA 316, 1775–1785 (2016). https://doi.org/10.1001/jama.2016.14799
- Kawazoe, Y. et al. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis: a randomized clinical trial. JAMA 317, 1321–1328 (2017). https://doi.org/10.1001/jama.2017.2088
- Lewis, K. et al. Safety and efficacy of dexmedetomidine in acutely ill adults requiring noninvasive ventilation: a systematic review and metaanalysis of randomized trials. Chest 159, 2274–2288 (2021). https://doi.org/10.1016/j.chest.2020.12.052
- Mei, B., Li, J. & Zuo, Z. Dexmedetomidine attenuates sepsisassociated inflammation and encephalopathy via central α2A adrenoceptor. Brain Behav. Immun. 91, 296–314 (2021). https://doi.org/10.1016/j.bbi.2020.10.008
- Hughes, C. G. et al. Dexmedetomidine or propofol for sedation in mechanically ventilated adults with sepsis. N. Engl. J. Med. 384, 1424– 1436 (2021). https://doi.org/10.1056/nejmoa2024922
- Heybati, K. et al. Outcomes of dexmedetomidine versus propofol sedation in critically ill adults requiring mechanical ventilation: a systematic review and meta-analysis of randomised controlled trials. Br. J. Anaesth. 129, 515–526 (2022). https://doi.org/10.1016/j.bja.2022.06.020
- Iwashyna, T. J., Cooke, C. R., Wunsch, H. & Kahn, J. M. Population burden of long-term survivorship after severe sepsis in older Americans. J. Am. Geriatr. Soc. 60, 1070–1077 (2012). https://doi.org/10.1111/j.1532-5415.2012.03989.x
- Fleischmann-Struzek, C. et al. Epidemiology and costs of postsepsis morbidity, nursing care dependency, and mortality in Germany, 2013 to 2017. JAMA Netw. Open 4, e2134290 (2021). https://doi.org/10.1001/jamanetworkopen.2021.34290
- Chao, P. W. et al. Association of postdischarge rehabilitation with mortality in intensive care unit survivors of sepsis. Am. J. Respir. Crit. Care Med. 190, 1003–1011 (2014). https://doi.org/10.1164/rccm.201406-1170oc
- Oberhaus, J., Wang, W., Mickle, A. M., Becker, J., Tedeschi, C., Maybrier, H. R., & Avidan, M. S. (2021). Evaluation of the 3-minute diagnostic confusion assessment method for identification of postoperative delirium in older patients. JAMA Network Open, 4(12), e2137267-e2137267. https://doi.org/10.1001/jamanetworkopen.2021.37267