Published July 22, 2025 | Version v2
Journal article Open

Expense Coding Syntax: Misclassification in AI-Powered Corporate ERPs

  • 1. ROR icon Universidad de la República
  • 2. Universidad de Palermo
  • 3. ROR icon Universidad de la Empresa

Description

Abstract

This study examines how syntactic constructions in expense narratives affect misclassification rates in AI-powered corporate ERP systems. We trained transformer-based classifiers on labeled accounting data to predict expense categories and observed that these models frequently relied on grammatical form rather than financial semantics. We extracted syntactic features including nominalization frequency, defined as the ratio of deverbal nouns to verbs; coordination depth, measured by the maximum depth of coordinated clauses; and subordination complexity, expressed as the number of embedded subordinate clauses per sentence. Using SHAP (SHapley Additive exPlanations), we identified that these structural patterns significantly contribute to false allocations, thus increasing the likelihood of audit discrepancies. For interpretability, we applied the method introduced by Lundberg and Lee in their seminal work, “A Unified Approach to Interpreting Model Predictions,” published in Advances in Neural Information Processing Systems 30 (2017): 4765–4774.

To mitigate these syntactic biases, we implemented a rule-based debiasing module that re-parses each narrative into a standardized fair-syntax transformation, structured around a minimal Subject-Verb-Object sequence. Evaluation on a corpus of 18,240 expense records drawn from the U.S. Federal Travel Expenditure dataset (GSA SmartPay, 2018–2020, https://smartpay.gsa.gov) shows that the fair-syntax transformation reduced misclassification rates by 15 percent. It also improved key pre-audit compliance indicators, including GL code accuracy—defined as the percentage of model-assigned codes matching human-validated general ledger categories, with a target threshold of ≥ 95 percent—and reconciliation match rate, the proportion of expense records successfully aligned with authorized payment entries, aiming for ≥ 98 percent.

The findings reveal a direct operational link between linguistic form and algorithmic behavior in accounting automation, providing a replicable interpretability framework and a functional safeguard against structural bias in enterprise classification systems.

 

DOI: https://doi.org/10.5281/zenodo.16322760

This work is also published with DOI reference in Figshare https://doi.org/10.6084/m9.figshare.29618654 and Pending SSRN ID to be assigned. ETA: Q3 2025.

Resumen

Este estudio analiza cómo las construcciones sintácticas presentes en las narrativas de gastos afectan las tasas de clasificación errónea en sistemas ERP corporativos impulsados por inteligencia artificial. Se entrenaron clasificadores basados en transformadores sobre datos contables etiquetados, y se observó que estos modelos se apoyan con frecuencia en patrones gramaticales superficiales en lugar de en la semántica financiera subyacente. Se extrajeron métricas sintácticas como la frecuencia de nominalización (definida como la proporción entre sustantivos deverbales y verbos), la profundidad de coordinación (medida por la máxima profundidad de cláusulas coordinadas) y la complejidad de subordinación (cantidad de cláusulas subordinadas incrustadas por oración). Mediante SHAP (SHapley Additive exPlanations), se identificó que estos patrones estructurales contribuyen de forma significativa a asignaciones erróneas, elevando el riesgo de discrepancias contables y observaciones de auditoría. Para la interpretación, se aplicó el método propuesto por Lundberg y Lee en su artículo “A Unified Approach to Interpreting Model Predictions”, publicado en Advances in Neural Information Processing Systems 30 (2017): 4765–4774.

Como estrategia de mitigación, se implementó un módulo de corrección sintáctica basado en reglas que reescribe cada narrativa en una transformación de sintaxis justa, estructurada según una secuencia mínima Sujeto–Verbo–Objeto. La evaluación se realizó sobre un corpus de 18.240 registros de gastos extraídos del conjunto de datos del Programa Federal de Viajes de EE. UU. (GSA SmartPay, 2018–2020, https://smartpay.gsa.gov), y mostró que la transformación de sintaxis justa redujo las tasas de clasificación errónea en un 15 %. También mejoró indicadores clave de cumplimiento previo a la auditoría, como la precisión del código contable (porcentaje de códigos asignados por el modelo que coinciden con categorías del libro mayor validadas por humanos, con umbral objetivo ≥ 95 %) y la tasa de conciliación (proporción de registros emparejados correctamente con transacciones autorizadas, con objetivo ≥ 98 %).

Los resultados revelan un vínculo operativo directo entre la forma lingüística y el comportamiento algorítmico en automatización contable, y proponen un marco replicable de interpretación y una salvaguarda funcional contra el sesgo estructural en los sistemas de clasificación empresarial.

Files

Expense Coding Syntax.pdf

Files (1.2 MB)

Name Size Download all
md5:8bd61c199bf8fe76a594c81a300b2fa9
1.2 MB Preview Download

Additional details

Related works

Cites
Journal article: 10.2139/ssrn.5319520 (DOI)
Journal article: 10.2139/ssrn.5285265 (DOI)
Describes
Journal article: 10.5281/zenodo.15962491 (DOI)