Published July 11, 2025 | Version v1
Image Open

Parasitic Egg Detection and Classification in Microscopic Images

Description

Parasitic infections have been recognised as one of the most significant causes of illnesses by WHO. Most infected persons shed cysts or eggs in their living environment, and unwittingly cause transmission of parasites to other individuals. Diagnosis of intestinal parasites is usually based on direct examination in the laboratory, of which capacity is obviously limited. Targeting to automate routine faecal examination for parasitic diseases, this challenge aims to gather experts in the field to develop robust automated methods to detect and classify eggs of parasitic worms in a variety of microscopic images. Participants will work with a large-scale dataset, containing 11 types of parasitic eggs from faecal smear samples. They are the main interest because of causing major diseases and illness in developing countries. We open to any techniques used for parasitic egg recognition, ranging from conventional approaches based on statistical models to deep learning techniques. Finally, the organisers expect a new collaboration come out from the challenge.

Instructions:

Datasets contain 11 parasitic egg types. Each category has 1,000 images.

  • category_id 0: Ascaris lumbricoides
  • category_id 1: Capillaria philippinensis
  • category_id 2: Enterobius vermicularis
  • category_id 3: Fasciolopsis buski
  • category_id 4: Hookworm egg
  • category_id 5: Hymenolepis diminuta
  • category_id 6: Hymenolepis nana
  • category_id 7: Opisthorchis viverrine
  • category_id 8: Paragonimus spp
  • category_id 9: Taenia spp. egg
  • category_id 10: Trichuris trichiura

Please visit the Challenge Homepage (https://icip2022challenge.piclab.ai/).

Results must be submitted to the Leaderboard at the Challenge Homepage (https://icip2022challenge.piclab.ai/submission/).

Please cite our paper for the usage after the competition: N. Anantrasirichai,  T. H. Chalidabhongse, D. Palasuwan, K. Naruenatthanaset, T. Kobchaisawat, N. Nunthanasup, K. Boonpeng, X. Ma and A. Achim, "ICIP 2022 Challenge on Parasitic Egg Detection and Classification in Microscopic Images: Dataset, Methods and Results," IEEE ICIP2022.

Files

Chula-ParasiteEgg-11.zip

Files (11.6 GB)

Name Size Download all
md5:1621521969547b0291c0cfbf7e450074
9.1 GB Preview Download
md5:a47fdab77ced45bc40b0e8b1e6ff8d22
2.4 GB Preview Download
md5:4ea3e8dec6b8e8dc269441dd5e3cde11
442.1 kB Preview Download