Published June 25, 2025 | Version v1
Journal article Open

Mercury exposure triggers diabetes mellitus through a pancreatic beta cell endoplasmic reticulum stress mechanism

  • 1. Medical Science Education Doctoral Programme, Faculty of Medicine and Health Sciences, Lambung Mangkurat University, South Kalimantan, Indonesia
  • 2. Department of Biochemistry, Faculty of Medicine and Health Sciences, Lambung Mangkurat University, South Kalimantan, Indonesia
  • 3. Departement of Nursing, Faculty of Medicine and Health Sciences, Lambung Mangkurat University, South Kalimantan, Indonesia
  • 4. Department of Internal Medicine, Faculty of Medicine and Health Sciences, Lambung Mangkurat University, South Kalimantan, Indonesia
  • 5. Department of Anatomical Pathology, Faculty of Medicine and Health Sciences, Lambung Mangkurat University, South Kalimantan, Indonesia
  • 6. Department of Biomedics, Faculty of Medicine and Health Sciences, Lambung Mangkurat University, South Kalimantan, Indonesia
  • 7. Department of Histology, Faculty of Medicine, Mulawarman University, North Kalimantan, Indonesia

Description

Mercury  the source of free radicals,can trigger the activation of ER  stress can cause beta cell pancreas injuries and result in diabetes mellitus. There have been many studies on mercury toxicity in various organs, but there are still few scientific studies that examine the pathomechanism of diabetes mellitus caused by mercury through the endoplasmic reticulum stress.This study was conducted to investigate the triggering of the endoplasmic reticulum stress pathway due to mercury exposure in beta cell pancreas injury resulting diabetes mellitus. Research using randomized true laboratory experiment method with post-test control group design. The number of samples used was 28 Wistar rats. The research group consisted of 2 groups, control group was given aquadest ad libitum, and intervention group was given water contaminated with mercury per oral once a day (15 kg/WB). The treatment period was 14 consecutive days and on the 15th day, blood samples were taken. ER stress marker was assessed by examining Ca2+ count, expression levels of GRP 78 and JNKp; beta cell injuries were assessed by examining fasting blood sugar. The collected data were analyzed by independent t-test with 95% confidence level; significant if p>0.05. The study found that mercury exposure can trigger ER stress activation of pancreatic beta cells and cause impairment in their function in metabolising glucose, resulting in hyperglycaemia, which can lead to diabetes mellitus. Further research needs to be conducted to look for the involvement of higher-level cellular biomolecular mechanisms that could form the basis of specific therapies for mercury-induced diabetes mellitus.

Files

1 Mercury exposure triggers diabetes.pdf

Files (586.9 kB)

Name Size Download all
md5:a19596c4cd4930f6826778db93bbc835
586.9 kB Preview Download

Additional details

References

  • 1. Mitra S, Chakraborty AJ, Tareq AM, Emran T Bin, Nainu F, Khusro A, et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univ - Sci [Internet]. 2022;34(3):101865. Available from: https://doi.org/10.1016/j.jksus.2022.101865
  • 2. Abd Elnabi MK, Elkaliny NE, Elyazied MM, Azab SH, Elkhalifa SA, Elmasry S, et al. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review. Toxics. 2023;11(7).
  • Chew W, Yap CK, Ismail A, Zakaria MP, Tan SG. Mercury distribution in an invasive species (Asystasia gangetica) from Peninsular Malaysia. Sains Malaysiana. 2012;41(4):395–401.
  • 4. Yuliana I, Triawanti, Asnawati, Ullfah F, Maulana I. The Effects of Heavy Metal Contamination on Liver Function in a Rat Model. MAGNA Med Berk Ilm Kedokt dan Kesehat with [Internet]. 2024;11(August):145–53. Available from: https://jurnal.unimus.ac.id/index.php/APKKM%0A
  • 5. Wu YS, Osman AI, Hosny M, Elgarahy AM, Eltaweil AS, Rooney DW, et al. The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega. 2024;9(5):5100–26.
  • 6. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12(April):1–19.
  • 7. Ciacci C, Betti M, Abramovich S, Cavaliere M, Frontalini F. Mercury-induced oxidative stress response in benthic foraminifera: An in vivo experiment on amphistegina lessonii. Biology (Basel). 2022;11(7):1–12.
  • 8. Ghorbani Nejad B, Raeisi T, Janmohammadi P, Mehravar F, Zarei M, Dehghani A, et al. Mercury exposure and risk of type 2 diabetes: A systematic review and meta-analysis. Int J Clin Pract. 2022;2022.
  • 9. Hussien M. Assessment of thermogravimetric properties of the gallbladder using B- mode grey scale ultrasonography in diabetic patients with neuropathy Evaluación de las propiedades termogravimétricas de la vesícula biliar mediante ecografía en escala de grises en mo. 2023;(Dm).
  • 10. Yang CY, Liu SH, Su CC, Fang KM, Yang TY, Liu JM, et al. Methylmercury induces mitochondria-and endoplasmic reticulum stress-dependent pancreatic β-cell apoptosis via an oxidative stress-mediated JNK signaling pathway. Int J Mol Sci. 2022;23(5):1–23.
  • 11. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):1–34.
  • 12. Zhang IX, Herrmann A, Leon J, Jeyarajan S, Arunagiri A, Arvan P, et al. ER stress increases expression of intracellular calcium channel RyR1 to modify Ca2+ homeostasis in pancreatic beta cells. J Biol Chem [Internet]. 2023;299(8):105065. Available from: https://doi.org/10.1016/j.jbc.2023.105065
  • 13. Yuliana Ida, Triawanti, M Darwin Prenggono IKO. Mercury: Its role in endoplasmic reticulum stress of pancreatic beta cells in the incident of diabetes mellitus. Rev Latinoam Hipertens. 2024;19(4):175–82.
  • 14. Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The unfolded protein response: a double-edged sword for brain health. Antioxidants. 2023;12(8):1–26.
  • 15. Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7).
  • 16. Magnuson MA, Osipovich AB. Ca2+ signaling and metabolic stress-induced pancreatic β-cell failure. Front Endocrinol (Lausanne). 2024;15(July):1–9.
  • 17. Buttaev MR, Kazamanova VI, Vyazovtseva VV, Rizvanova AR, Filatova KK, Gasanov MA, et al. Prophylactics of heart and society effects in patients with diabetes mellitus. Rev Latinoam Hipertens. 2025;20(1):24–30.
  • 18. Cruz Hidalgo P, Morales Carrasco C, Valle Córdova M, Urdiales Arcos V, Quinteros Romero C, Vázquez Verdugo M, et al. Obesidad y enfermedad cardiovascular: de lo molecular a lo clínico Obesity and cardiovascular disease: From the molecular to the clinical implications RESUMEN ABSTRACT. Síndrome Cardiometabólico y enfermedades crónicas Degener [Internet]. 2021;XI(1):44–9. Available from: http://doi.org/10.5281/zenodo.6437779
  • 19. Bensellam M, Laybutt DR, Jonas JC. Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and above Metal Homeostasis and Antioxidant Response. Biology (Basel). 2021;10(3):176.
  • 20. Takanezawa Y, Sakai K, Nakamura R, Ohshiro Y, Uraguchi S, Kiyono M. Inhibition of p38 Mitogen-Activated Protein Kinases Attenuates Methylmercury Toxicity in SH-SY5Y Neuroblastoma Cells. Vol. 46, Biological and Pharmaceutical Bulletin. 2023. p. 1203–10.
  • 21. Zhou Z, Zhou B, Chen H, Lu K, Wang Y. Oxidative stress activates the Nrf2-mediated antioxidant response and P38 MAPK pathway: A possible apoptotic mechanism induced by BDE-47 in rainbow trout (Oncorhynchus mykiss) gonadal RTG-2 cells. Environ Pollut [Internet]. 2021;287(May):117341. Available from: https://doi.org/10.1016/j.envpol.2021.117341
  • 22. Javaid A, Akbar I, Javed H, Khan U, Iftikhar H, Zahra D, et al. Role of Heavy Metals in Diabetes: Mechanisms and Treatment Strategies. Crit Rev Eukaryot Gene Expr [Internet]. 2021;31(3):65–80. Available from: http://www.dl.begellhouse.com/journals/6dbf508d3b17c437,276309ca23c68a1c,3ecf1e6e4170aff4.html
  • 23. Tsai TL, Kuo CC, Pan WH, Wu TN, Lin P, Wang SL. Type 2 diabetes occurrence and mercury exposure –from the national nutrition and health survey in taiwan. Environ Int [Internet]. 2019;126(February):260–7. Available from: https://doi.org/10.1016/j.envint.2019.02.038
  • 24. Kettel P, Karagöz GE. Endoplasmic reticulum: Monitoring and maintaining protein and membrane homeostasis in the endoplasmic reticulum by the unfolded protein response. Int J Biochem Cell Biol. 2024;172(May).
  • 25. Zhang IX, Raghavan M, Satin LS. The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinol (United States). 2020;161(2):1–14.
  • 26. Rojas-Franco P, Franco-Colín M, Torres-Manzo AP, Blas-Valdivia V, Thompson-Bonilla M del R, Kandir S, et al. Endoplasmic reticulum stress participates in the pathophysiology of mercury-caused acute kidney injury. Ren Fail. 2019;41(1):1001–10.
  • 27. Liu W, Yang T, Xu Z, Xu B, Deng Y. Methyl-mercury induces apoptosis through ROS-mediated endoplasmic reticulum stress and mitochondrial apoptosis pathways activation in rat cortical neurons. Free Radic Res [Internet]. 2019;53(1):26–44. Available from: https://doi.org/10.1080/10715762.2018.1546852
  • 28. Guan L, Zhan Z, Yang Y, Miao Y, Huang X, Ding M. Alleviating chronic ER stress by p38-Ire1-Xbp1 pathway and insulin-associated autophagy in C. elegans neurons. PLoS Genet [Internet]. 2020;16(9):1–25. Available from: http://dx.doi.org/10.1371/journal.pgen.1008704
  • 29. Sahin GS, Lee H, Engin F. An accomplice more than a mere victim: The impact of β-cell ER stress on type 1 diabetes pathogenesis. Mol Metab [Internet]. 2021;54(October):101365. Available from: https://doi.org/10.1016/j.molmet.2021.101365
  • 30. Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol. 2016;16(8):469–84.
  • 31. Chipurupalli S, Samavedam U, Robinson N. Crosstalk Between ER Stress, Autophagy and Inflammation. Front Med. 2021;8(November):1–9.
  • 32. Hotamisligil GS. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease. Cell. 2010;140(6):900–17.
  • 33. Fletcher PA, Thompson B, Liu C, Bertram R, Satin LS, Sherman AS. Ca2+ release or Ca2+ entry, that is the question: what governs Ca2+ oscillations in pancreatic β cells? Am J Physiol Endocrinol Metab. 2023;324(6):E477–87.
  • 34. Shen Z, Hou Y, Zhao G, Tan L, Chen J, Dong Z, et al. Physiological functions of glucose transporter-2: From cell physiology to links with diabetes mellitus. Heliyon [Internet]. 2024;10(3):e25459. Available from: https://doi.org/10.1016/j.heliyon.2024.e25459
  • 35. Roos D, Seeger R, Puntel R, Vargas Barbosa N. Role of calcium and mitochondria in mehg-mediated cytotoxicity. J Biomed Biotechnol. 2012;2012:8–10.
  • 36. Schumacher L, Abbott LC. Effects of methyl mercury exposure on pancreatic beta cell development and function. J Appl Toxicol. 2017;37(1):4–12.
  • 37. Maqbool F, Bahadar H, Niaz K, Baeeri M, Rahimifard M, Navaei-Nigjeh M, et al. Effects of methyl mercury on the activity and gene expression of mouse Langerhans islets and glucose metabolism. Food Chem Toxicol [Internet]. 2016;93:119–28. Available from: http://dx.doi.org/10.1016/j.fct.2016.05.005
  • 38. Douae B, Samir B, Meriam EA, Fatima-zahra Y, Youssef A. Mercuric Chloride Aggravates Hyperglycemia-Induced Anxiety and Depressive-Like Behaviors in Type 2 Diabetic Rats: Breakdown of the Antioxidant Defense System. Biol Trace Elem Res [Internet]. 2025; Available from: https://doi.org/10.1007/s12011-025-04640-y
  • 39. Haidar Z, Fatema K, Shoily SS, Sajib AA. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Reports [Internet]. 2023;10(January):554–70. Available from: https://doi.org/10.1016/j.toxrep.2023.04.010
  • 40. Ji JH, Jin MH, Kang JH, Lee S Il, Lee S, Kim SH, et al. Relationship between heavy metal exposure and type 2 diabetes: A large-scale retrospective cohort study using occupational health examinations. BMJ Open. 2021;11(3):1–10.