Published November 27, 2018 | Version v1
Conference paper Open

Post-common envelope binary stars: Radiative Levitation and Blue Large- Amplitude Pulsators

  • 1. Trinity College Dublin, Dublin 2, Ireland. Armagh Observatory and Planetarium, College Hill. Armagh BT61 9DG, UK

Description

Following the recent discovery of a new class of pulsating star, the blue large-amplitude pulsators (BLAPs), pulsation stability analysis was carried out on evolutionary models of post-common envelope (CE) ejection stars of 0.3 and 0.46 solar masses. These models subsequently evolve to become a low-mass helium white dwarf and a core helium-burning extreme horizontal-branch star respectively. We investigate the effects of atomic diffusion, particularly radiative levitation, on the pulsation behaviour of the models. We find that when the models have effective temperatures comparable to those of BLAPs, the inclusion of radiative levitation allows sufficient enhancement of heavy metals to produce opacity-driven fundamental mode pulsations with periods similar to those observed in BLAPs.

Files

phost_proceedings_byrne.pdf

Files (944.3 kB)

Name Size Download all
md5:9c7eb04d4dcf33493d1dc357280157b2
944.3 kB Preview Download

Additional details

Related works

Is identical to
arXiv:1811.10974 (arXiv)

References

  • Byrne, C. M. & Jeffery, C. S. 2018, MNRAS, 481, 3810.
  • Byrne, C. M., Jeffery, C. S., Tout, C. A., & Hu, H. 2018, MNRAS, 475, 4728.
  • Charpinet, S., Fontaine, G., Brassard, P., & Dorman, B. 1996, ApJ, 471, L103.
  • Fontaine, G., Brassard, P., Charpinet, S., Green, E. M., Chayer, P., et al. 2003, ApJ, 597, 518.
  • Green, E. M., Fontaine, G., Reed, M. D., Callerame, K., Seitenzahl, I. R., et al. 2003, ApJ, 583, L31.
  • Grevesse, N. & Sauval, A. J. 1998, SSRv, 85, 161.
  • Han, Z., Podsiadlowski, P., Maxted, P. F. L., & Marsh, T. R. 2003, MNRAS, 341, 669.
  • Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R., & Ivanova, N. 2002, MNRAS, 336, 449.
  • Hu, H., Tout, C. A., Glebbeek, E., & Dupret, M.-A. 2011, MNRAS, 418, 195.
  • Jeffery, C. S. & Saio, H. 2006, MNRAS, 372, L48.
  • Jeffery, C. S. & Saio, H. 2016, MNRAS, 458, 1352.
  • Kilkenny, D., Koen, C., O'Donoghue, D., & Stobie, R. S. 1997, MNRAS, 285, 640.
  • Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., et al. 2011, ApJS, 192, 3.
  • Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., et al. 2013, ApJS, 208, 4.
  • Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., et al. 2015, ApJS, 220, 15.
  • Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., et al. 2018, ApJS, 234, 34.
  • Pietrukowicz, P., Dziembowski, W. A., Latour, M., Angeloni, R., Poleski, R., et al. 2017, Nature Astronomy, 1, 0166.
  • Romero, A. D., Córsico, A. H., Althaus, L. G., Pelisoli, I., & Kepler, S. O. 2018, MNRAS, 477, L30.
  • Townsend, R. H. D. & Teitler, S. A. 2013, MNRAS, 435, 3406.
  • Udalski, A., Szymański, M. K., & Szymański, G. 2015, AcA, 65, 1.