Unconventional Mgnon Blockade Under the Sagenac Fizeau Shift in an Opto-Magnonic System: Parametric Amplification
Creators
- 1. Department of Physics, Vidyasagar University, Midnapore, (West Bengal), India.
- 1. Department of Physics, Vidyasagar University, Midnapore, (West Bengal), India.
- 2. Department of Physics, Vidyasagar University, Midnapore, West Bengal, India.
Description
Abstract: We propose to achieve and enhance the unconventional magnon blockade effect, based on a quantum destructive interference mechanism in an optomechanicalmagnetic system composed of a rotating cavity and a yttrium irongarnet (YIG) sphere. We introduce a degenerate parametric amplifier and derive the optimal parametric gain and phase to achieve magnon blockade analytically. By tuning the system parameters (weak coupling) and the driving detuning of the cavity and magnon modes, we achieve the smallest second-order magnon correlation function. The optomechanical cavity couples to the YIG sphere by magnetic dipole interaction. We achieve unconventional magnon blockade effects when the cavity is driven from a clockwise or counterclockwise direction. We introduce a new feature that combines the impact of destructive interference and energy-level anharmonicity to achieve magnon blockade. The equal-time second-order magnon correlation avoids time delay and rapid oscillation. In the input end of the system, two photons drive, and complete quantum destructive interference. This study opens a new window for physical applications, including the generation of single magnon sources, Quantum sensing, and Quantum simulation. Experimentally, we can control quantum noise and amplify the signal using parametric amplification.
Files
G110712070725.pdf
Files
(1.7 MB)
Name | Size | Download all |
---|---|---|
md5:2854fd72b7f4dc052524b50907626ca1
|
1.7 MB | Preview Download |
Additional details
Identifiers
- DOI
- 10.35940/ijies.G1107.12060625
- EISSN
- 2319-9598
Dates
- Accepted
-
2025-06-15Manuscript received on 01 June 2025 | First Revised Manuscript received on 08 June 2025 | Second Revised Manuscript received on 12 June 2025 | Manuscript Accepted on 15 June 2025 | Manuscript published on 30 June 2025.
References
- Lasher. G. J. (1964). Analysis of a proposed bistable injection laser. Solid state Electronics 7, 707. DOI: https://doi.org/10.1049/ip-j.1986.0047
- Dorsel, A. et al. (1983). Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 1550. DOI: https://doi.org/10.1103/PhysRevLett.51.1550
- Yuan. G. et al. (2008). Theoretical and experimental studies on bistability in semiconductor ring lasers with two optical injections. IEEE J. S. T. Quant. Ele. 14, 3. DOI: https://doi.org/10.1109/JSTQE.2008.918058
- Jiang. C. et al. (2013). Controllable optical bistability based on photons and phonons in a two-mode optomechanical system. Phys. Rev.. A. 88, 055801. DOI: http://doi.org//10.1088/1612-202X/acf046
- Li. S. et al. (2017). Optical bistability via an external control field in an all-fibre ring cavity. Sci. Rep. 7, 8992. DOI: https://doi.org/10.1016/j.optlastec.2017.07.052
- Yu. C. Sun. L. Zhang. H. and Chen. F. (2018). Controllable optical bistability in a double quantum dot molecule. IET Optoelectronics 12, 215. DOI: https://doi.org/10.1049/iet-opt.2018.0033
- Minh. P. L. T. et al. (2018). Optical bistability in a controllable giant self-Kerr nonlinear gaseous medium, electromagnetically induced transparency, and Doppler broadening. Int. j. opt., article id 7260960. DOI: http://dx.doi.org/10.1155/2018/7260960
- Jiang. C. Bian. X. Cui. Y. and Chen. G. (2016). Optical bistability and dynamics in an optomechanical system with a two-level atom. J. Opt. Am. B 33, 10. DOI: https://doi.org/10.1364/JOSAB.33.002099
- Li. J. Yu. R. Ding. C. and Wu. Y. (2014). Optical bistability and fourwave mixing with a single nitrogen-vacancy centre coupled to a photonic crystal nanocavity in the weak-coupling regime. Opt. Express 22, 15024. DOI: https://doi.org/10.1364/OE.22.015024
- Jiang. L et al. (2017). Optical bistability and four-wave mixing in a hybrid optomechanical system. Phys. Lett. A. 381, 3289. DOI: https://doi.org/10.1016/j.physleta.2017.08.045
- Chen. H. J. et al. (2019). Controllable optical bistability and four-wave mixing in a photonic molecule optomechanics. Nanoscale research letters 14, 73. DOI: https://doi.org/10.1186/s11671-019-2893-2 12. Baas, A. Karr. J. P. Eleuch. H. and Giacobino. E. (2004). Opt
- Baas, A. Karr. J. P. Eleuch. H. and Giacobino. E. (2004). Optical bistability in semiconductor microcavities, Phys. Rev.. A 69, 023809. DOI: https://doi.org/10.1103/PhysRevA.69.023809
- Kyrlienko. O. Liew. T. C. H. and Shelykh. I. A. (2013). Optomechanics with cavity polaritons: Dissipative coupling and unconventional bistability. arxiv: 1308.2131v1 [cond-mat.mess-hall]. DOI: https://doi.org/10.1103/PhysRevLett.112.076402
- Zhang. G. Q. Wang. Y. P. You. J. Q. (2019). Theory of the magnon Kerr effect in cavity magnonics. arxiv: 1903.03754v1 [quant-ph]. DOI: https://doi.org/10.1103/PhysRevB.94.224410
- Wang. Y. P. et al. (2018). Bistability of cavity magnon polariton. arxiv: 1707.06509v2[quant-ph] DOI: https://doi.org/10.1103/PhysRevLett.120.057202
- Kong. C. Xiong. H. and Wu. Y. (2019). Magnon-induced nonreciprocity based on the Magnon Kerr effect. Phys. Rev.. App. 12, 034001. DOI: https://doi.org/10.1103/PhysRevApplied.12.034001
- Elliott. M. and Ginossar. E. (2016). Applications of the Fokker-Planck equation in circuit quantum electrodynamics. arxiv: 1606.08508v1 [quant-ph]. DOI: https://doi.org/10.1103/PhysRevA.94.043840
- Mukherjee. K. and Jana. P. C. (2019). Optical bistability in a coupled cavity system. Proceedings of the international conference on optics and electro-optics (ICOL-2019). Springer Proceedings in Physics 258, 247. DOI: https://doi.org/10.1007/978-981-15-9259-1_56
- Gippius. N. A. et al. (2004). Nonlinear dynamics of polariton scattering in semiconductor microcavity: Bistability vs. stimulated scattering. Eur. Phys. Lett. 67, 997. DOI: http://doi.org//10.1209/epl/i2004-10133-6
- Larionova. Y. Stolz. W. and Weiss. C. O. (2008). Optical bistability and spatial resonator solitons based on exciton-polariton nonlinearity. Opt. Lett. 33, 32.1. DOI: https://doi.org/10.1364/OL.33.000321
- Y. Zhang et al, The multistability in the coupled semiconductor microcavities. Int. J. Quant. Inf. 13, 1550053. (2015). DOI: https://doi.org/10.1142/S0219749915500537
- Jing. H. et al. (2018). Nanoparticle sensing with a spinning resonator. Optica 5, 1424. DOI: https://doi.org/10.1364/OPTICA.5.001424
- Mirza. I. M. Ge. W. and Jing. H. (2019). Optical nonreciprocity and slow light in coupled spinning optomechanical resonators. Opt. Exp. 27, 25515. DOI: https://doi.org/10.1364/oe.27.025515
- Gibbs. H. (1985). Optical Bistability: Controlling light with light. (Academic, New York,). DOI: https://doi.org/10.1007/978-3-540-38950-7_46
- Peyghambarian. N. and Gibbs. H. M. (1985). Optical bistability for optical signal processing and computing. Optical Engineering 24, 68. DOI: https://doi.org/10.1117/12.7973427
- Xu. L. and Wang. B.C. (2002). Optical spectral bistability in a semiconductor fibre ring laser through gain saturation in an SOA. IEEE Photon. Tech. Lett. 14, 149. DOI: https://doi.org/10.1109/68.980477
- Mao. Q. and Lit. J.W. (2003). L-band fibre laser with wide tuning range based on dual-wavelength optical bistability in linear overlapping grating cavities. IEEE J. Quant. Electron 39, 1252. DOI: https://doi.org/10.1002/mop.11198
- Faraon, A. et al. (2011). Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 13, 055025. DOI: http://doi.org//10.1088/1367-2630/13/5/055025
- Sete. E.A. and Eleuch. H. (2012). Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Phys. Rev.. A. 85, 043824. DOI: https://doi.org/10.1103/PhysRevA.85.043824
- Gao. M. et al. (2015). Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-largeamplitude regime. Phys. Rev.. A. 91, 013833. DOI: https://doi.org/10.1103/PhysRevA.91.013833
- Yan. D. et al. (2015). Duality and bistability in an optomechanical cavity coupled to a Rydberg superatom. Phys. Rev.. A. 91, 023813. DOI: https://doi.org/10.1103/PhysRevA.91.023813
- Mukherjee. K. and Jana. P. C. (2019). Controlled optical bistability in parity-time symmetry micro-cavities: Possibility of all-optical switching. Physica E: Low-dimensional systems and nanostructures 117, 113780. DOI: https://doi.org/10.1016/j.physe.2019.113780
- Irvine. W. T. M. et al. (2006). Strong coupling between single photons in semiconductor microcavities. Phys. Rev.. Lett. 96, 057405. DOI: https://doi.org/10.1103/PhysRevLett.96.057405
- Yang. Z. et al. (2007). Enhanced second-harmonic generation in AlGaAs microring resonators. Opt. Lett. 32, 826. DOI: https://doi.org/10.1364/OL.32.000826
- Andreani. L. C. Panzarini. G. and Gerard. J. M. (1999). Strongcoupling regime for quantum boxes in pillar microcavities: Theory. Phys. Rev.. B 60, 13276. DOI: https://doi.org/10.1103/PhysRevB.60.13276
- Skauli. T. et al. (2002). Measurement of the nonlinear coefficient orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation. Opt. Lett. 27, 628. DOI: https://doi.org/10.1364/OL.27.000628
- Bergfeld. S. Daum. W. (2003). Second-harmonic generation in GaAs: Experiment versus theoretical predictions of 𝒳𝑥𝑦𝑧 (2) . Phys. Rev. Lett. 90, 036801. DOI: http://doi.org//10.1103/PhysRevLett.90.036801
- Chen. J. Levine. Z. H. and Wilkins. J. W. (1995). Calculated secondharmonic susceptibilities of BN, AlN, and GaN. Appl. Phys. Lett. 66, 9. DOI: https://doi.org/10.1063/1.113835
- Sanford. N. A. et al. (2005). Measurement of second-order susceptibilities of GaN and AlGaN. J. App. Phys. 97, 053512. https://doi.org/10.1063/1.1852695
- Roland. I. et al. (2016). Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks. Sci. Rep. 6, 34191. DOI: https://doi.org/10.1038/srep34191
- May. S. et al. (2019). Second-harmonic generation in AlGaAs-oninsulator waveguides. Opt. Lett. 44, 1339 DOI: https://doi.org/10.1364/OL.44.001339
- GMalykin. B. (2000). The Sagnac effect: correct and incorrect explanations. Phys. Usp. 43, 1229. DOI: https://doi.org/10.1070/pu2000v043n12ABEH000830
- Franke, A. S. Gibson, G. Boyd, R. W. Padgett. M. J. (2011). Rotary photon drag enhanced by a slow-light medium. Science 333, 65. DOI: https://doi.org/10.1126/science.1203984
- Maayani. S. et al. (2018). Flying couplers above spinning resonators generate irreversible refraction. Nature 558, 569. DOI: https://doi.org/10.1038/s41586-018-0245-5
- Arita. Y. Mazilu. M. and Dholakia. K. (2013). Laser-induced rotation and cooling of a trapped microgyroscope in a vacuum. Nat. Comm. 4, 2374. DOI: https://doi.org/10.1038/ncomms3374
- Monteiro. F. Ghosh. S. Assendelft. E. C. V. and Moore. D. C. (2018). Optical rotation of levitated spheres in high vacuum. Phys. Rev. A. 97, 051802(R). DOI: http://dx.doi.org/10.1103/PhysRevA.97.051802
- Ahn. J. et al. (2018). Optically levitated nano-dumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett. 121, 033603. DOI: https://doi.org/10.1103/PhysRevLett.121.033603
- Reimann. R. et al. (2018). GHz rotation of an optically trapped nanoparticle in a vacuum. Phys. Rev. Lett. 121, 033602. DOI: https://doi.org/10.1103/PhysRevLett.121.033602
- Wang. K. Wu. Q. Yu. Y. F. Zhang. Z. M. (2019). Nonreciprocal photon blockade in a two-mode cavity with a second-order nonlinearity. Phys. Rev. A. 100, 053832. DOI: https://doi.org/10.1103/PhysRevA.100.053832