Quantum–Classical Synergies in Topology Optimization for 3D-Printed UHPC Bridge Structures: A Critical Review of Computational Paradigms, Sustainability Metrics, and Scalability Barriers
- 1. Lecturer, Department of Civil Engineering, Institute of Technology, University of Gondar, Gondar, Ethiopia.
Description
Abstract: Recent advances in quantum computing, combined with classical algorithms, are reshaping how engineers approach topology optimization (TO), particularly in the context of 3Dprinted ultra-high-performance concrete (UHPC) bridge structures. This review critically examines how hybrid quantum– classical methods are influencing structural design workflows, with a focus on theoretical frameworks, computational strategies, sustainability metrics, and practical scalability. Drawing on a wide range of current academic literature and case-based studies, the paper assesses how quantum approaches, such as the Quantum Approximate Optimisation Algorithm (QAOA) and Variational Quantum Eigensolver (VQE), may overcome the challenges posed by complex design spaces and nonlinear behaviours commonly encountered in TO problems. The analysis also highlights the role of machine learning in complementing quantum algorithms, particularly for tasks such as surrogate modelling, performance prediction, and real-time optimisation feedback. Sustainability assessments further reveal that these hybrid approaches can contribute to substantial reductions in material consumption, embodied carbon, and construction waste, particularly when combined with additive manufacturing processes that accommodate irregular or efficiency-driven geometries. Despite these promising developments, the review identifies several limitations that require attention. These include the technical constraints of current quantum devices, gaps in standardised computational frameworks, and issues related to scaling optimized forms for real-world fabrication. In response, the study outlines future research directions, including the development of open-source platforms, cross-disciplinary collaboration, and physical validation of optimised UHPC components. By integrating insights from quantum computing, structural engineering, and digital fabrication, this review presents a comprehensive and realistic perspective on the opportunities and challenges associated with quantum–classical synergy in sustainable bridge design. It emphasises the need for thoughtful, collaborative innovation to realise the potential of these cutting-edge technologies fully.
Files
G260613070625.pdf
Files
(723.2 kB)
Name | Size | Download all |
---|---|---|
md5:185b512a6df26e7846cb4a7b12c93f37
|
723.2 kB | Preview Download |
Additional details
Identifiers
- DOI
- 10.35940/ijese.G2606.13070625
- EISSN
- 2319-6378
Dates
- Accepted
-
2025-06-15Manuscript received on 22 May 2025 | First Revised Manuscript received on 29 May 2025 | Second Revised Manuscript received on 04 June 2025 | Manuscript Accepted on 15 June 2025 | Manuscript published on 30 June 2025.
References
- Bendsøe, M. P., & Kikuchi, N. (1988). Generating Optimal Topologies in Structural Design Using a Homogenization Method. Computational Methods in Applied Mechanics and Engineering, 71(2), 197–224. DOI: https://doi.org/10.1016/0045-7825(88)90086-2
- Bendsøe, M. P., & Sigmund, O. (2003). Topology Optimization: Theory, Methods and Applications. Springer. DOI: http://doi.org//10.1007/978-3-662-05086-6
- Allaire, G., Jouve, F., & Toader, A. M. (2004). Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 194(1), 363–393. DOI: http://doi.org//10.1016/j.jcp.2003.09.032
- Graybeal, B. A. (2006). Ultra-high-performance concrete: A state-ofthe-art report for the bridge community. FHWA-HRT-06-103, Federal Highway Administration. https://www.researchgate.net/publication/259438585
- Yoo, D. Y., & Yoon, Y. S. (2016). Properties of Ultra-HighPerformance Concrete (UHPC) for Structural Applications: A Review. International Journal of Concrete Structures and Materials, 10, 265–276. DOI: https://doi.org/10.1016/j.cemconcomp.2016.08.001
- Zhang, W., Luo, Q., & Guo, Z. (2019). Additive manufacturing of concrete: Potentials and challenges. Construction and Building Materials, 212, 718–728. DOI: http://doi.org//10.1016/j.conbuildmat.2019.03.181
- Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Gibb, A. G. F., & Thorpe, T. (2022). A review of 3D printing in construction and the opportunities and challenges in emerging markets. Automation in Construction, 131, 103877. DOI: http://doi.org//10.1016/j.autcon.2021.103877
- Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., ... & Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625–644. DOI: http://doi.org//10.1038/s42254-021-00348-9
- Schuld, M., & Killoran, N. (2019). Quantum Machine Learning in Feature Hilbert Spaces. Physical Review Letters, 122(4), 040504. DOI: http://doi.org//10.1103/PhysRevLett.122.040504
- Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505– 510. DOI: http://doi.org//10.1038/s41586-019-1666-5
- Qi, B., Zhao, Z., He, W., & Zhang, H. (2022). Quantum algorithms for structural optimization problems: A review and outlook. Quantum Information Processing, 21(4), 124. DOI: http://doi.org//10.1007/s11128-022-03435-7
- Dunjko, V., & Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics, 81(7), 074001. DOI: http://doi.org//10.1088/1361-6633/aab406
- Rozvany, G. I. N. (2009). A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 37(3), 217–237. DOI: https://doi.org/10.1007/s00158-007-0217-0
- Gilbert, R. D., & Tyas, A. (2003). The use of limit analysis and topology optimization to design steel truss structures. Structural and Multidisciplinary Optimization, 25(3), 209–215.
- Brütting, J., Rapp, S., & Schellenberg, A. (2018). Stress-based topology optimization of pedestrian bridges with serviceability constraints. Engineering Structures, 172, 99–109. DOI: http://doi.org//10.1016/j.engstruct.2018.05.066
- Cao, Y., Wang, Y., & Zhang, J. (2020). Integration of topology optimization with additive manufacturing for Ultra-High Performance Concrete structures: Challenges and opportunities. Automation in Construction, 120, 103394. DOI: http://doi.org//10.1016/j.autcon.2020.103394
- Ajagekar, A., et al. (2021). Quantum-Inspired Machine Learning for Structural Optimization. Computers & Structures, 253, 106620. DOI: https://doi.org/10.1016/j.compstruc.2021.106620
- Azhar, S., Carlton, W. A., Olsen, D., & Ahmad, I. (2021). Building sustainability assessment: A framework and comparative evaluation. Journal of Cleaner Production, 287, 125592. DOI: https://doi.org/10.1016/j.jclepro.2020.125592
- Bharti, K., et al. (2022). Noisy Intermediate-Scale Quantum Algorithms. Reviews of Modern Physics, 94(1), 015004. DOI: https://doi.org/10.1103/RevModPhys.94.015004
- Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202. DOI: https://doi.org/10.1038/nature23474
- Farhi, E., Goldstone, J., & Gutmann, S. (2014). A Quantum Approximate Optimization Algorithm. arXiv preprint arXiv:1411.4028. https://arxiv.org/abs/1411.4028
- Ferrari, A., et al. (2021). Toward sustainable quantum computing. npj Quantum Information, 7(1), 113.
- Gao, Y., et al. (2023). Generative design and deep learning in structural optimization. Advanced Engineering Informatics, 57, 101130. DOI: https://doi.org/10.1016/j.jcp.2024.113506
- Kim, J. H., et al. (2022). Long-term durability of 3D-printed UHPC structures. Construction and Building Materials, 342, 127952. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127952
- Liu, Y., Xu, D., & Wang, Z. (2020). Sustainable optimization of bridge structures using hybrid metaheuristics. Engineering Structures, 210, 110349. DOI: https://doi.org/10.1016/j.engstruct.2020.110349
- Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411. https://arxiv.org/abs/1307.0411
- Moll, N., Barkoutsos, P., Bishop, L. S., Chow, J. (2018). Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology, 3(3), 030503. DOI: https://doi.org/10.1088/2058-9565/aab822
- Penadés-Plà, V., García-Segura, T., Martí, J. V., & Yepes, V. (2019). Life-cycle assessment: A comparison between two optimal posttensioned concrete box-girder road bridges. Sustainability, 11(10), 2937. DOI: https://doi.org/10.3390/su11102937
- Perdomo-Ortiz, A., Benedetti, M., Realpe-Gomez, J., & Biswas, R. (2018). Opportunities for quantum computing in bridge design. Nature Computational Science, 1(3), 142–152. DOI: http://dx.doi.org/10.1088/2058-9565/aab859
- Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru-Guzik, A., & O'Brien, J. L. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5, 4213. DOI: https://doi.org/10.1038/ncomms5213
- Preskill, J. (2018). Quantum Computing in the NISQ era and beyond. Quantum, 2, 79. DOI: https://doi.org/10.22331/q-2018-08-06-79
- Russell, H., & Mamlouk, M. (2020). Ultra-high-performance concrete for sustainable bridge design. ACI Structural Journal, 117(1), 120–132.
- Smith, J., Lee, H., & Tan, C. (2022).Smith, J., Lee, H., & Tan, C. (2022). Carbon footprint evaluation of optimized 3D printed structures. Materials Today Sustainability, 17, 100097. Carbon footprint evaluation of optimized 3D printed structures. Materials Today Sustainability, 17, 100097.
- Wang, T., Li, M., & Zhao, Z. (2022). Printability and mechanical performance of UHPC in digital fabrication. Construction and Building Materials, 315, 125789. DOI: https://doi.org/10.1016/j.conbuildmat.2021.125789
- Zhang, Y., et al. (2020). Constraints in 3D concrete printing: A review. Automation in Construction, 113, 103144. DOI: https://doi.org/10.1016/j.autcon.2020.103144
- Zhou, L., et al. (2020). Solving Structural Optimization Problems with Quantum Annealing. Engineering Optimization, 52(5), 857– 874.
- Zlokapa, Z., Holmes, Z., & Fefferman, B. (2021). Deep learning with quantum-enhanced optimization for structural topology. Quantum Machine Intelligence, 3(1), 1–14. DOI: https://doi.org/10.1007/s42484-021-00035-1
- Zhao, Z.-L., Xiong, Y., Yao, S., & Xie, Y. M. (2021). A new approach to eliminating enclosed voids in topology optimization for additive manufacturing. Additive Manufacturing, 32, 101006. DOI: https://doi.org/10.1016/j.addma.2019.101006
- Jin Fan, Yi Shao, Matthew J. Bandelt, Matthew P. Adams. (2024). Sustainable reinforced concrete design: The role of ultra-highperformance concrete (UHPC) in life-cycle structural performance and environmental impacts. Engineering Structures, Volume 316, 1 October 2024, 118585. DOI: https://doi.org/10.1016/j.engstruct.2024.118585
- Mengesha, Girmay, Ultra-High-Performance Concrete (Uhpc/Uhpfrc) For Civil Structures: A Comprehensive Review of Material Innovations, Structural Applications, And Future Engineering Perspectives (May 14, 2025). Available At SSRN: DOI: http://dx.doi.org/10.2139/ssrn.5254543
- Mengesha, Girmay, Design Optimization in Structural Engineering: A Systematic Review of Computational Techniques and Real-World Applications (May 14, 2025). Available at SSRN: DOI: http://dx.doi.org/10.2139/ssrn.5254589