Artifact: Activation Approximations Can Incur Safety Vulnerabilities in Aligned LLMs: Comprehensive Analysis and Defense
Description
Large Language Models (LLMs) have showcased remarkable capabilities across various domains. Accompanying the evolving capabilities and expanding deployment scenarios of LLMs, their deployment challenges escalate due to their sheer scale and the advanced yet complex activation designs prevalent in notable model series, such as Llama, Gemma, Mistral. These challenges have become particularly pronounced in resource-constrained deployment scenarios, where mitigating inference bottlenecks is imperative. Among various recent efforts, activation approximation has emerged as a promising avenue for pursuing inference efficiency, sometimes considered indispensable in applications such as private inference. Despite achieving substantial speedups with minimal impact on utility, even appearing sound and practical for real-world deployment, the safety implications of activation approximations remain unclear.
In this work, we fill this critical gap in LLM safety by conducting the first systematic safety evaluation of activation approximations. Our safety vetting spans seven state-of-the-art techniques across three popular categories (activation polynomialization, activation sparsification, and activation quantization), revealing consistent safety degradation across ten safety-aligned LLMs. To overcome the hurdle of devising a unified defense accounting for diverse activation approximation methods, we perform an in-depth analysis of their shared error patterns and uncover three key findings. We propose QuadA, a novel safety enhancement method tailored to mitigate the safety compromises introduced by activation approximations. Extensive experiments and ablation studies corroborate QuadA’s effectiveness in enhancing the safety capabilities of LLMs after activation approximations.
For evaluation, we provide two bash scripts to 1) support the reproduction of the safety assessment results across multiple open source models, and 2) enhance the robustness of LLMs via activation approximation-aware alignment.
Files
quada.zip
Files
(25.3 MB)
Name | Size | Download all |
---|---|---|
md5:2dfb56737d3430247b21153dec9577fb
|
25.3 MB | Preview Download |