Applications of Microfluidics in Biomedical and Pharmaceutical Fields -An Overview
Creators
- 1. Assistant Professor, Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow (Uttar Pradesh), India.
- 1. Student, Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow (Uttar Pradesh), India.
- 2. Associate Professor, Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow (Uttar Pradesh), India.
- 3. Assistant Professor, Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Lucknow (Uttar Pradesh), India.
Description
Abstract: The precise manipulation of fluids at the microscale level within minuscule channels measuring tens to hundreds of micrometres is the subject of the multifaceted field of microfluidics. This technology has transformed the pharmaceutical industry by enabling miniaturised, highthroughput, and economical drug discovery, formulation, and delivery solutions. Creating sophisticated drug delivery systems like nanoparticles and liposomes has become far simpler because this method can precisely control fluid dynamics, enabling faster reaction kinetics and better drug encapsulation. Beyond drug formulation, microfluidic platforms enable disease modelling, toxicity assessment, and pharmacokinetic/pharmacodynamic analysis, providing a quick and efficient alternative to conventional techniques. In addition, devices like microfluidic chips combine several analysis processes into a single device with less reagent consumption and enhanced research encouragement. Furthermore, microfluidics is vital in personalised medicine and point-of-care diagnostics, offering rapid, more accurate testing for a customised treatment strategy. The increased use of microfluidics in pharmaceutical research is promising to facilitate faster drug discovery, enhance individualised medicine, and improve point-of-care diagnostic testing. This paper discusses the definition, importance, and uses of microfluidics in the pharmaceutical field based on its implications for the future of drug discovery and healthcare.
Files
D106605040525.pdf
Files
(484.2 kB)
Name | Size | Download all |
---|---|---|
md5:55143b2b3fde40555210a9c23d38bbc5
|
484.2 kB | Preview Download |
Additional details
Identifiers
- DOI
- 10.54105/ijpmh.D1066.05040525/
- EISSN
- 2582-7588
Dates
- Accepted
-
2025-05-15Manuscript received on 04 March 2025 | First Revised Manuscript received on 24 March 2025 | Second Revised Manuscript received on 17 April 2025 | Manuscript Accepted on 15 May 2025 | Manuscript published on 30 May 2025.
References
- Harink, B., Le Gac, S., Truckenmüller, R., Van Blitterswijk, C., Habibovic, P. Regeneration-on-a-chip? The perspectives on the use of microfluidics in regenerative medicine. Vol. 13, Lab on a Chip. Royal Society of Chemistry; 2013. p. 3512–28. DOI: https://doi.org/10.1039/C3LC50293G
- Trinh, T.N.D., Do, H.D.K., Nam, N.N., Dan, T.T., Trinh, K.T.L., Lee, N.Y. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Vol. 16, Pharmaceuticals. 2023. DOI: https://doi.org/10.3390/ph16070937
- Matuła, K., Rivello, F., Huck, W.T.S. Single-Cell Analysis Using Droplet Microfluidics. Vol. 4, Advanced Biosystems. 2020. DOI: https://doi.org/10.1002/adbi.201900188
- Mark, D., Haeberle, S., Roth, G., Stetten, F. V., Zengerle, R. Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chem Soc Rev. 2010 Feb 24;39(3):1153–82. DOI: https://doi.org/10.1039/B820557B
- Raj, M. K., Chakraborty, S. PDMS microfluidics: A mini review. Vol. 137, Journal of Applied Polymer Science. John Wiley and Sons Inc.; 2020. DOI: https://doi.org/10.1002/app.48958
- Narayanamurthy, V., Jeroish, Z.E., Bhuvaneshwari, K.S., Bayat, P., Premkumar, R., Samsuri, F., et al. Advances in passively driven microfluidics and lab-on-chip devices: A comprehensive literature review and patent analysis. RSC Adv. 2020 Mar 23;10(20):11652–80. DOI: https://doi.org/10.1039/D0RA00263A
- Tarn, M.D., Lopez-Martinez, M.J., Pamme, N. On-chip processing of particles and cells via multilaminar flow streams. Vol. 406, Analytical and Bioanalytical Chemistry. Springer Verlag; 2014. p. 139–61. DOI: https://doi.org/10.1007/s00216-013-7363-6
- You, I., Yun, N., Lee, H. Surface-tension-confined microfluidics and their applications. Vol. 14, ChemPhysChem. 2013. p. 471–81. DOI: https://doi.org/10.1002/cphc.201200929
- Ong, S.E., Zhang, S., Du, H., Fu, Y. Fundamental principles and applications of microfluidic systems. Vol. 13, Frontiers in Bioscience. 2008. DOI: https://doi.org/10.2741/2883
- Gharib, G., Bütün, İ., Muganlı, Z., Kozalak, G., Namlı, İ., Sarraf, S.S., et al. Biomedical Applications of Microfluidic Devices: A Review. Vol. 12, Biosensors. MDPI; 2022. DOI: https://doi.org/10.3390/bios12111023
- Lambert, M., Grossier, R., Lagaize, M., Bactivelane, T., Heresanu, V., Robert, B., et al. Modular microfluidic platform for solubility measurement, nucleation statistics and polymorph screening of active pharmaceutical ingredients: Irbesartan, Rimonabant, Aripiprazole and Sulfathiazole. DOI: https://doi.org/10.1016/j.jcrysgro.2023.127252
- Elvira, K.S. Microfluidic technologies for drug discovery and development: friend or foe? Vol. 42, Trends in Pharmacological Sciences. Elsevier Ltd; 2021. p. 518–26. DOI: https://doi.org/10.1016/j.tips.2021.04.009
- Niculescu, A.G., Chircov, C., Bîrcă, A.C., Grumezescu, A.M. Fabrication and applications of microfluidic devices: A review. Vol. 22, International Journal of Molecular Sciences. MDPI AG; 2021. p. 1–26. DOI: http://doi.org/10.3390/ijms22042011
- Mosavati, B., Oleinikov, A., Du, E. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Sci Rep. 2022 Dec 1;12(1). DOI: https://doi.org/10.1038/s41598-022-19422-y
- Miny, L., Maisonneuve, B.G.C., Quadrio, I., Honegger, T. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Vol. 10, Frontiers in Bioengineering and Biotechnology. Frontiers Media S.A.; 2022. DOI: https://doi.org/10.3389/fbioe.2022.919646
- Ai, Y., Zhang, F., Wang, C., Xie, R., Liang, Q. Recent progress in labon-a-chip for pharmaceutical analysis and pharmacological/toxicological test. Vol. 117, TrAC - Trends in Analytical Chemistry. Elsevier B.V.; 2019. p. 215–30. DOI: https://doi.org/10.1016/j.trac.2019.06.026
- Sung, J.H., Kam, C., Shuler, M.L. A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab on a Chip. 2010;10(4):446–55. DOI: https://doi.org/10.1039/B917763A
- Fei, J., Wu, L., Zhang, Y., Zong, S., Wang, Z., Cui, Y. Pharmacokineticson-a-Chip Using Label-Free SERS Technique for Programmable DualDrug Analysis. ACS Sens. 2017 Jun 23;2(6):773–80. DOI: https://doi.org/10.1021/acssensors.7b00122
- Contreras-Naranjo, J.C., Wu, H.J., Ugaz, V.M. Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalised medicine. Vol. 17, Lab on a Chip. Royal Society of Chemistry; 2017. p. 3558–77. DOI: https://doi.org/10.1039/C7LC00592J
- Ayuso, J.M., Virumbrales-Muñoz, M., Lang, J.M., Beebe, D.J. A role for microfluidic systems in precision medicine. Vol. 13, Nature Communications. Nature Research; 2022. DOI: https://doi.org/10.1038/s41467-022-30384-7
- Özyurt, C., Uludağ, İ., İnce, B., Sezgintürk, M.K. Lab-on-a-chip systems for cancer biomarker diagnosis. Vol. 226, Journal of Pharmaceutical and Biomedical Analysis. 2023. DOI: https://doi.org/10.1016/j.jpba.2023.115266
- Mathur, L., Ballinger, M., Utharala, R., Merten, C.A. Microfluidics as an Enabling Technology for Personalized Cancer Therapy. Small [Internet]. 2020 Mar 20;16(9). DOI: https://doi.org/10.1002/smll.201904321
- Wei, Y., Lin, M., Luo, S., Muhammad, S., Abbasi, T., Tan, L., et al. AutoICell: An Accessible and Cost-Effective Integrative Droplet Microfluidic System for Real-Time Single-Cell Morphological and Apoptotic Analysis. DOI: https://doi.org/10.48550/arXiv.2311.02927
- Mollica, H., Palomba, R., Primavera, R., Decuzzi, P. Two-channel compartmentalized microfluidic chip for real-time monitoring of the metastatic cascade. DOI: https://doi.org/10.1021/acsbiomaterials.9b00697
- Lipreri, M.V., Totaro, M.T., Boos, J.A., Basile, M.S., Baldini, N., Avnet, S. A Novel Microfluidic Platform for Personalized Anticancer Drug Screening Through Image Analysis. Micromachines (Basel). 2024 Dec 1;15(12). DOI: https://doi.org/10.3390/mi15121521
- Arshavsky-Graham, S., Segal, E. Lab-on-a-Chip Devices for Point-ofCare Medical Diagnostics. In: Advances in Biochemical Engineering/Biotechnology. Springer Science and Business Media Deutschland GmbH; 2022. p. 247–65. DOI: https://doi.org/10.1007/10_2020_127
- Sista, R., Hua, Z., Thwar, P., Sudarsan, A., Srinivasan, V., Eckhardt, A., et al. Development of a digital microfluidic platform for point of care testing. Lab on a Chip. 2008;8(12):2091–104. DOI: https://doi.org/10.1039/b814922d
- Li, B., Li, L., Guan, A., Dong, Q., Ruan, K., Hu, R., et al. A Smartphone Controlled Handheld Microfluidic Liquid Handling System. DOI: https://doi.org/10.1039/C4LC00227J
- Gupta, S., Ramesh, K., Ahmed, S., Kakkar, V. Lab-on-chip technology: A review on design trends and future scope in biomedical applications. Vol. 8, International Journal of Bio-Science and Bio-Technology. Science and Engineering Research Support Society; 2016. p. 311–22. DOI: http://dx.doi.org/10.14257/ijbsbt.2016.8.5.28
- Yazdian, K. S., Afzalian, A., Shirinichi, F., Keshavarz, M. M. Microfluidics for core-shell drug carrier particles - a review. Vol. 11, RSC Advances. Royal Society of Chemistry; 2020. p. 229–49. DOI: https://doi.org/10.1039/D0RA08607J
- Fabozzi, A., Della, S. F., di Gennaro, M., Barretta, M., Longobardo, G., Solimando, N., et al. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. Vol. 23, Lab on a Chip. Royal Society of Chemistry; 2023. p. 1389–409. DOI: https://doi.org/10.1039/D2LC00933A
- Sartipzadeh, O., Naghib, S.M., Haghiralsadat, F., Shokati, F., Rahmanian, M. Microfluidic-assisted synthesis and modelling of stimuli-responsive monodispersed chitosan microgels for drug delivery applications. Sci Rep. 2022 Dec 1;12(1). DOI: https://doi.org/10.1038/s41598-022-12031-9
- Cui, P., Wang, S. Application of microfluidic chip technology in pharmaceutical analysis: A review. Journal of Pharmaceutical Analysis. 2019 Aug 1;9(4):238–47. DOI: https://doi.org/10.1016/j.jpha.2018.12.001
- Toh, Y.C., Lim, T.C., Tai, D., Xiao, G., Van Noort, D., Yu, H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab on a Chip. 2009;9(14):2026–35. DOI: https://doi.org/10.1039/B900912D
- Tirella, A., Marano, M., Vozzi, F., Ahluwalia, A. A microfluidic gradient maker for toxicity testing of bupivacaine and lidocaine. Toxicology in Vitro. 2008 Dec 1;22(8):1957–64. DOI: https://doi.org/10.1016/j.tiv.2008.09.016
- Nishat Sayyed, Vidit Patil, Mohammed Painter, Deepali Nayak, Nuclei Detection for Drug Discovery using Deep Learning. (2019). In International Journal of Recent Technology and Engineering (Vol. 8, Issue 2S8, pp. 1289–1294). DOI: https://doi.org/10.35940/ijrte.b1055.0882s819
- M, Sushmitha., James. A, J., Narayanamurthy, V., N, Padmasini., & Samsuri, F. (2019). Microfluidic Microchannel (Size And Shape) for Single Cell Analysis by Numerical Optimization: Lateral Trapping Method. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1s4, pp. 747–752). DOI: https://doi.org/10.35940/ijeat.a1136.1291s419
- Boya, V. R., & Rao, Dr. K. S. S. (2019). Operational Excellence in Pharmaceuticals – The Role of Human Resource Management Practices in Pharmaceutical Industry, Hyderabad, India. In International Journal of Innovative Technology and Exploring Engineering (Vol. 8, Issue 12, pp. 383–387). DOI: https://doi.org/10.35940/ijitee.l3296.1081219