Published May 26, 2025 | Version v1
Dataset Open

T3Set: Table Tennis Training Multimodal Dataset

  • 1. State Key Lab of CAD&CG
  • 2. ROR icon Zhejiang University

Contributors

Data manager:

  • 1. State Key Lab of CAD&CG
  • 2. ROR icon Zhejiang University

Description

This is the dataset for the KDD'25 (dataset and benchmark track) full paper "T3Set: A Multimodal Dataset with Targeted Suggestions for LLM-based Virtual Coach in Table Tennis Training".

T3Set (Table Tennis Training) is a multimodal dataset with aligned video-sensor-text data in table tennis training. The key features of T3Set include (1)temporal alignment between sensor data, video data, and text data. (2)high-quality targeted suggestions which are consistent with predefined suggestion taxonomy.

The scripts we used for dataset construction and data cleaning processes, are provided in the Github Repo: https://github.com/jima-cs/t3set

If you find this dataset useful, please cite our paper:  
```bibtex  
@inproceedings{
    ma2025t3set,
    title={T3Set: A Multimodal Dataset with Targeted Suggestions for LLM-based Virtual Coach in Table Tennis Training},
    author = {Ma, Ji and Wu, Jiale and Wang, Haoyu and Zhang, Yanze and Xie, Xiao and Zhou, Zheng and Zhang, Hui and Wang, Jiachen and Wu, Yingcai},
    year={2025},
    booktitle = {Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2},
    doi={10.1145/3711896.3737407}
    pages = {5686–5697},
    numpages = {12},
    publisher = {Association for Computing Machinery}
}  
``` 

Files

README.pdf

Files (28.0 GB)

Name Size Download all
md5:4c86331263ea5148308618e0ae66a05e
74.9 kB Preview Download
md5:e3708e32e87d21b15df0c757993257ca
734.0 MB Download
md5:fc755efaaf04df9a56ac33a34d8466e5
734.0 MB Download
md5:2d8eb9255b0c9abcf6d4c71c761f430b
734.0 MB Download
md5:b56a9f693acc10c7a80b50b69b2fae50
734.0 MB Download
md5:1d410740efed1b4ca4795fa86c001898
734.0 MB Download
md5:c5745004ec4bfe72fb917275676c0e4a
734.0 MB Download
md5:e581f29af7cabe854ed9cf34167a63e7
734.0 MB Download
md5:921d484b18866c524eab574a8403754a
734.0 MB Download
md5:bf1e04065a4dbb8ce5eda696b7987f10
734.0 MB Download
md5:b1f9a9353e33adce65e606abb1f28524
734.0 MB Download
md5:c1fca922bd0930ea1efd45625878d587
734.0 MB Download
md5:5cc551798a31a66b245b418eeba178ac
734.0 MB Download
md5:76bf294e61580eaae6ff0e228a755e98
734.0 MB Download
md5:41f8c280f7863748b67e1c93d9b15552
734.0 MB Download
md5:aa976c23f4c01d1d67c78afc78b4aac8
734.0 MB Download
md5:beb27d09d72e9c83be8ec389d82f7fce
734.0 MB Download
md5:a00f8ba9001995201f63d5a7d2b59260
734.0 MB Download
md5:d40f1e674a8d124a19e6f5bbb2723cd4
734.0 MB Download
md5:0ad54ee80e0111f05c1b5dd217a4e7fa
734.0 MB Download
md5:d8aadb435a25a9dca7daa94e64295645
734.0 MB Download
md5:876b266615667e077a71c7109ec27468
734.0 MB Download
md5:7a2702a65dc854cfda9c8a1b2a03df12
734.0 MB Download
md5:edd502fa27474b79cba0b66c80818592
734.0 MB Download
md5:f21597a074889b6e2465938b8d1b6892
734.0 MB Download
md5:0dfdd8151ced3e65a855f1c3d6e49557
734.0 MB Download
md5:6f8188e156e14b9a6c76bb6c56df068e
734.0 MB Download
md5:9d9c18f4a92f21b3740f049ffda31409
734.0 MB Download
md5:6b5003c8213ddecb72f460ead06967e0
734.0 MB Download
md5:1f1a317eabd3b052b5dfeae05a44f9eb
734.0 MB Download
md5:b78d52978c52e15b0872dc27553c4204
734.0 MB Download
md5:4b63f6c75e01e2bf1a0f76833b6ded70
734.0 MB Download
md5:a13d26cb0bd0ac37113c986c6340d07c
734.0 MB Download
md5:e59975107c991c410b32cb0324f173a7
734.0 MB Download
md5:b3bdf739600a044b8e382f8a45ed3616
734.0 MB Download
md5:607241f745b911770ca48836b7b8c339
734.0 MB Download
md5:71466b5286818e8b0810d8b42ccddf34
734.0 MB Download
md5:57274603a24fafe157e0b1eb0bad76d2
734.0 MB Download
md5:86a9feae6f3d221097f8eda52c78a73b
734.0 MB Download
md5:d0103ee3fdb29236725d10f1c0a8bb64
67.9 MB Preview Download

Additional details

Dates

Available
2025-05-26

Software

Repository URL
https://github.com/jima-cs/t3set
Programming language
Python
Development Status
Active