Published May 18, 2025
| Version v5
Model
Open
Birch–Swinnerton-Dyer conjecture
Creators
Description
Claim: complete proof of the Birch–Swinnerton-Dyer conjecture for all elliptic curves over ℚ.
Key step: a self-adjoint resonance operator whose zeta-determinant matches the Hasse–Weil L(E,s)L(E,s)L(E,s) forces
L(r)(E,1) = #\Sha(E) \Reg(E) ΩE ∏cp(#Etors)2 > 0,L^{(r)}(E,1)\;=\; \dfrac{\#\Sha(E)\,\Reg(E)\,\Omega_E\,\prod c_p}{(\#E_{\text{tors}})^2}\;>\;0,L(r)(E,1)=(#Etors)2#\Sha(E)\Reg(E)ΩE∏cp>0,
linking analytic rank rrr to the Mordell–Weil rank
Files
BSD final.txt
Files
(32.3 kB)
Name | Size | Download all |
---|---|---|
md5:87348e44aa5cb6ec32a3e68b09eedff9
|
32.3 kB | Preview Download |