Bidirectional English to Wolaytta Machine Translation Using Hybrid Approach
- 1. Department of Information Technology, Wolaita Sodo University, Ethiopia.
Contributors
Contact person:
Researchers:
- 1. Department of Information Technology, Wolaita Sodo University, Ethiopia.
- 2. Department of Information System, Addis Ababa University, Ethiopia.
- 3. Department of Information Technology, Shenzen University, China.
Description
Abstract: As a part of natural language processing (NLP), machine translation focuses on automated techniques to produce target language text from the source language text. In this study, we combined two approaches: the rule-based MT approach and the statistical MT approach. Sentence reordering, Language model, Translation models, and decoding comprise the system. POS tagging was used to reorder the sentence more comparably, the IRSTLM tool was used to create language models for English, and the Wolaytta, Giza++ tool was used for translation. To ensure mutual translation, two language models have been developed. Four phases of experiments are carried out on the collected data set. Phases of experimentation include preprocessing on the parallel corpus, language modeling, training the translation model, and tune-up the translation system. For both side translations, the BLEU score assessed the accuracy of the translation from Wolaytta to English was 46.31 % and from English to Wolaytta was 56.56%.
Files
B102814020125.pdf
Files
(1.5 MB)
Name | Size | Download all |
---|---|---|
md5:c4b5807ffcddebc8bdb8c6eadd2f4635
|
1.5 MB | Preview Download |
Additional details
Identifiers
- DOI
- 10.35940/ijsce.B1028.15020525
- EISSN
- 2231-2307
Dates
- Accepted
-
2025-05-15Manuscript received on 12 December 2024 | First Revised Manuscript received on 21 December 2024 | Second Revised Manuscript received on 16 March 2025 | Manuscript Accepted on 15 May 2025 | Manuscript published on 30 May 2025.
References
- Kim, M. K., Takero, H., & Fedovik, S. (2023). Universal Syntactic Structures: Modeling Syntax for Various Natural Languages. arXiv preprint arXiv:2402.01641. DOI: https://doi.org/10.48550/arXiv.2402.01641
- Ashkanasy, N. M., Trevor-Roberts, E., & Earnshaw, L. (2002). The Anglo cluster: Legacy of the British empire. Journal of World Business, 37(1), 28-39. DOI: https://doi.org/10.1016/S1090- 9516(01)00072-4
- Bade, G. Y., & Seid, H. (2018). Development of Longest-Match Based Stemmer for Texts of Wolaita Language. Vol, 4, 79-83. DOI: https://doi.org/10.11648/j.ijdst.20180403.11
- Bedecho, A. T., & Bokka, R. K. (2024). Development of Sentiment Analysis for the Wolaita Language using Machine Learning Approaches. In 2024 International Conference on Information and Communication Technology for Development for Africa (ICT4DA) (pp. 178-182). IEEE. DOI: https://doi.org/10.1109/ICT4DA62874.2024.10777118
- Ambushe, S. A., Awoke, N., Demissie, B. W., & Tekalign, T. (2023). Holistic nursing care practice and associated factors among nurses in public hospitals of Wolaita zone, South Ethiopia. BMC nursing, 22(1), 390. DOI: https://doi.org/10.1186/s12912-023-01517-0
- Rossi, C. (2017). Introducing statistical machine translation in translator training: from uses and perceptions to course design, and back again. Revista Tradumàtica: tecnologies de la traducció, (15), 48. Doi : https://doi.org/10.5565/rev/tradumatica.195
- Azath, M., & Kiros, T. (2020). Statistical machine translator for English to Tigrigna translation. International Journal of Scientific and Technology Research, 9(1), 2095-2099. DOI: https://www.readkong.com/page/statistical-machine-translator-forenglish-to-tigrigna-1868057
- Teshome, E. (2013). Bidirectional English-Amharic machine translation: an experiment using constrained corpus (Doctoral dissertation, Addis Ababa University). DOI: http://thesisbank.jhia.ac.ke/id/eprint/6064
- Mara, M. (2018). English-Wolaytta Machine Translation using Statistical Approach (Doctoral dissertation, St. Mary's University). http://www.repository.smuc.edu.et/handle/123456789/4462
- Tulu, G. (2022). Bidirectional AmharicAfaan Oromo Machine Translation Using Hybrid Approach. DOI: https://projectng.com/topic/co22921/bidirectional-amharic-afaanoromo-machine#google_vignette
- Shirko, B. F. (2020). Part of speech tagging for wolaita language using transformation-based learning (tbl) approach. DOI: https://www.researchgate.net/publication/345243262_Part_of_Speech_ Tagging_for_Wolaita_Language_using_Transformation_based_Learni ng_TBL_Approach
- Sinhal, R. A., & Gupta, K. O. (2014). Machine translation approaches and design aspects. IOSR Journal of Computer Engineering, 16(1), 22- 25. DOI: https://doi.org/10.9790/0661-16122225
- Koehn, P. (2009). Statistical machine translation. Cambridge University Press. Doi: https://doi.org/10.1017/CBO9780511815829
- Chéragui, M. A. (2012). Theoretical Overview of Machine Translation. ICWIT, 160-169. DOI: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=aad 01b2a642711ef0b4d7d89d8d50fc268a222ce
- Phan, H., & Jannesari, A. (2020). Statistical machine translation outperforms neural machine translation in software engineering: why and how Proceedings of the 1st ACM SIGSOFT International Workshop on Representation Learning for Software Engineering and Program Languages, Virtual, USA. DOI: https://doi.org/10.1145/3416506.3423576
- Thendral, R., & Sigappi, AN. (2020). Stacked Bidirectional Long Short Term Memory Models To Predict Protein Secondary Structure. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 3, pp. 1605–1608). DOI: https://doi.org/10.35940/ijitee.c8368.019320
- Vidya, K., Annapoorani, P., Akila, S., & Vijayalakshmi, M. (2019). Microcontroller Based Bi-Directional DC-DC Converter for Automobile Application. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 2, pp. 2776–2778). DOI: https://doi.org/10.35940/ijeat.b2280.129219
- S. T. Shenbagavalli, D. Shanthi, S. Naganandhini, R. Karthikeyan, Role of Deep Recurrent Neural Networks in Natural Language Processing. (2019). In International Journal of Recent Technology and Engineering (Vol. 8, Issue 2S11, pp. 4082–4084). DOI: https://doi.org/10.35940/ijrte.b1597.0982s1119
- Krishna, G. G. (2023). Multilingual NLP. In International Journal of Advanced Engineering and Nano Technology (Vol. 10, Issue 6, pp. 9– 12). DOI: https://doi.org/10.35940/ijaent.e4119.0610623
- Patidar, C. P., Katara, Y., & Sharma, Dr. M. (2020). Hybrid News Recommendation System using TF-IDF and Similarity Weight Index. In International Journal of Soft Computing and Engineering (Vol. 10, Issue 3, pp. 5–9). DOI: https://doi.org/10.35940/ijsce.c3471.1110320