There is a newer version of the record available.

Published May 10, 2025 | Version latest
Model Open

SOUL model docker image for the paper: Semantic segmentation of sparse irregular point clouds for leaf/wood discrimination

  • 1. ROR icon Centre Inria de l'Université Grenoble Alpes
  • 2. ROR icon UMR Botanique et Modélisation de l'Architecture des Plantes et des végétations
  • 1. ROR icon Centre de Coopération Internationale en Recherche Agronomique pour le Développement
  • 2. CIRAD Département Systèmes biologiques

Description

The is the docker image for SOUL model, implemented in the paper: 

Bai, Y., Durand, J.-B., Vincent, G., & Forbes, F. (2023). Semantic segmentation of  sparse irregular point clouds for leaf/wood discrimination. In A. Oh, T. Neumann,  A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), Advances in neural information  processing systems (Vol. 36, pp. 48293–48313). Curran Associates, Inc.

Files

Files (14.9 GB)

Name Size Download all
md5:c9f76bf6c4eaaa1343f84cf7f0671677
14.9 GB Download

Additional details

Related works

Is supplement to
Conference paper: arXiv:2305.16963 (arXiv)

Dates

Available
2025-05-10

Software

Repository URL
https://github.com/Na1an/phd_mission
Programming language
Python
Development Status
Active

References

  • Bai, Y., Durand, J.-B., Vincent, G., & Forbes, F. (2023). Semantic segmentation of sparse irregular point clouds for leaf/wood discrimination. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), Advances in neural information processing systems (Vol. 36, pp. 48293–48313). Curran Associates, Inc.