Published December 31, 2024
| Version v7
Preprint
Open
Resolution of the Vacuum Catastrophe from a New Quantum Scale and the Holographic Principle
Description
This study addresses the vacuum catastrophe, a significant discrepancy between quantum field theory (QFT) and general relativity (GR) by introducing the Lambda scale, a revolutionary natural system of units incorporating the cosmological constant Lambda, alongside hbar, c, and G. Using dimensional analysis and the Holographic Principle the traditional dominance of the Planck scale is challenged. A new quantum cut-off frequency for zero-point energy fluctuations reproduces exactly the energy density of the vacuum given in GR and aligns with observational data. We derive Lambda directly from first principles, demonstrating its pivotal role in conditioning the vacuum and unifying the gravitational and electromagnetic constants through the fine structure constant. The Lambda scale resolves the vacuum catastrophe and establishes gravity as an emergent thermodynamic phenomenon governed by the holographic principle. A new framework is presented for understanding why the constants of nature have the values they do. This study offers profound implications for cosmology and quantum gravity.
Files
FINAL_THESIS_XI (19).pdf
Files
(6.7 MB)
Name | Size | Download all |
---|---|---|
md5:3019ae1972a8bb4359cbe32e04bc6a1a
|
6.7 MB | Preview Download |
Additional details
Dates
- Available
-
2024-12-31Date of first public release.
References
- Butterfield, Herbert. (1958). The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Oxford University Press.
- Carroll, Sean M. (2001). The cosmological constant. Living reviews in relativity, 4(1), 1–56. Springer.
- Perlmutter, Saul et al. (1999). Measurements of Ω and Λ from 42 high-redshift supernovae. The Astrophysical Journal, 517(2), 565. IOP Publishing.
- Riess, Adam G. et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, 116(3), 1009. IOP Publishing.
- Barrow, John D. (2005). Cosmological constants and variations. Journal of Physics: Conference Series, 24(1), 253. IOP Publishing.
- Barrow, John. (1994). Theories of Everything. Physics and our view of the world. Cambridge University Press.
- Weinstein, Galina. (2012). Biographies of Albert Einstein—Mastermind of Theoretical Physics. arXiv preprint arXiv:1205.5539.
- Weinberg, Steven. (1989). The cosmological constant problem. Reviews of Modern Physics, 61(1), 1. APS.
- Einstein, Albert et al. (1905). Zur elektrodynamik bewegter körper. Annalen der physik, 17(10), 891–921. Springer.
- Zeldovich, IAB. (1967). Cosmological constant and elementary particles. ZHETF PIS'MA V REDAKTSIIU, 6, 883.
- Heisenberg, Werner. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43(3), 172–198. Springer.
- Sakurai, Jun John. (1967). Advanced Quantum Mechanics. Pearson Education India.
- Thorne, Kip S., Misner, Charles W., & Wheeler, John Archibald. (2000). Gravitation. Freeman San Francisco.
- Peebles, P. James E., & Ratra, Bharat. (2003). The cosmological constant and dark energy. Reviews of Modern Physics, 75(2), 559. APS.
- Thiemann, Thomas. (2008). Modern Canonical Quantum General Relativity. Cambridge University Press.
- Rovelli, Carlo. (2004). Quantum Gravity. Cambridge University Press.
- Susskind, Leonard. (2003). The anthropic landscape of string theory. arXiv preprint hep-th/0302219.
- Kuhn, Thomas S. (1992). The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Harvard University Press.
- Copernicus, Nicolaus. (2010). On the Revolutions of Heavenly Spheres. Prometheus Books.
- Feynman, Richard P., Leighton, Robert B., & Sands, Matthew L. (1964). The Feynman Lectures on Physics: Electromagnetism and Matter. Addison-Wesley Publishing Company.
- Bekenstein, Jacob D. (1973). Black holes and entropy. Physical Review D, 7(8), 2333. APS.
- Hawking, Stephen W. (1974). Black hole explosions? Nature, 248(5443), 30–31. Nature Publishing Group UK London.
- Einstein, Albert. (1917). Kosmologische betrachtungen zur allgemeinen relativitätstheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 142–152.
- Planck, Max. (1901). On the law of the energy distribution in the normal spectrum. Annalen der Physik, 4(553), 1–11.
- Milonni, Peter W. (2013). The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic Press.
- Spergel, David N., Verde, Licia, Peiris, Hiranya V., Komatsu, Eiichiro, Nolta, M. R., Bennett, Charles L., Halpern, Mark, Hinshaw, Gary, Jarosik, Norman, Kogut, Alan, et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. The Astrophysical Journal Supplement Series, 148(1), 175. IOP Publishing.
- Collaboration, Planck, Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., et al. (2014). Planck 2013 results. V. LFI calibration. Astronomy & Astrophysics, 571, A5.
- Weinberg, Steven. (2011). Dreams of a Final Theory: The Scientist's Search for the Ultimate Laws of Nature. Vintage.
- Guth, Alan H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Physical Review D, 23(2), 347. APS.
- Fridman, Aleksandr A. (1922). Über die Krümmung des Raumes. Zeitschrift für Physik, 10, 377–386.
- Di Bari, Pasquale. (2018). Cosmology and the Early Universe. CRC Press.
- Ade, Peter A. R., Aumont, J., Baccigalupi, Carlo, Banday, A. J., Barreiro, R. B., Bartolo, Nicola, Basak, Suman, Battaglia, Paola, Battaner, E., Benabed, K., et al. (2016). Planck 2015 results-III. LFI systematic uncertainties. Astronomy & Astrophysics, 594, A3.
- Eriksen, E., & Grøn, Ø. (1995). The de Sitter universe models. International Journal of Modern Physics D, 4(01), 115–159. World Scientific.
- Hořava, Petr, & Minic, Djordje. (2000). Probable values of the cosmological constant in a holographic theory. Physical Review Letters, 85(8), 1610. APS.
- Gu, Je-An, & Hwang, W. Y. P. (2006). Fate of an accelerating universe. Physical Review D—Particles, Fields, Gravitation, and Cosmology, 73(2), 023519. APS.
- Beck, Christian. (2009). Axiomatic approach to the cosmological constant. Physica A: Statistical Mechanics and its Applications, 388(17), 3384–3390. Elsevier.
- Meschini, Diego. (2007). Planck-scale physics: Facts and beliefs. Foundations of Science, 12, 277–294. Springer.
- Planck, Max. (1978). Über irreversible strahlungsvorgänge. Springer.
- Sommerfeld, Arnold. (1916). Zur quantentheorie der spektrallinien. Annalen der Physik, 356(17), 1–94. WILEY-VCH Verlag Leipzig.
- Solà, Joan. (2013). Cosmological constant and vacuum energy: old and new ideas. Journal of Physics: Conference Series, 453(1), 012015. IOP Publishing.
- Einstein, Albert. (1916). Die Grundlagen der allgemeinen Relativitätstheorie. Annalen der Physik, 49, 769. Springer.
- Zych, Magdalena, & Brukner, Časlav. (2018). Quantum formulation of the Einstein equivalence principle. Nature Physics, 14(10), 1027–1031. Nature Publishing Group UK London.
- Aldrovandi, Ruben, & Pereira, José Geraldo. (1995). An Introduction to Geometrical Physics. World Scientific.
- Rindler, Wolfgang. (2006). Relativity: Special, General, and Cosmological. OUP Oxford.
- Kempf, Achim. (2001). Mode generating mechanism in inflation with a cutoff. Physical Review D, 63(8), 083514. APS.
- Kinoshita, Toichiro. (1996). The fine structure constant. Reports on Progress in Physics, 59(11), 1459. IOP Publishing.
- Padmanabhan, Thanu. (2003). Cosmological constant—the weight of the vacuum. Physics Reports, 380(5-6), 235–320. Elsevier.
- Kiefer, Claus. (2014). Quantum gravity. In Springer Handbook of Spacetime (pp. 709–722). Springer.
- Moffat, John W. (2006). Scalar–tensor–vector gravity theory. Journal of Cosmology and Astroparticle Physics, 2006(03), 004. IOP Publishing.
- Bousso, Raphael. (2002). The holographic principle. Reviews of Modern Physics, 74(3), 825. APS.
- Susskind, Leonard. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377–6396. American Institute of Physics.
- Susskind, Leonard. (2008). The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics. Hachette UK.
- Peskin, Michael E. (2018). An Introduction to Quantum Field Theory. CRC Press.
- Bekenstein, Jacob D. (2020). Black holes and the second law. In Jacob Bekenstein: The Conservative Revolutionary (pp. 303–306). World Scientific.
- Verlinde, Erik. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4), 1–27. Springer.
- Harrison, E. (2000). Cosmology: The Science of the Universe. 2nd ed. CUP.
- Velten, Hermano E. S., Vom Marttens, R. F., & Zimdahl, Winifried. (2014). Aspects of the cosmological "coincidence problem." The European Physical Journal C, 74, 1–8. Springer.
- Barrow, J. D., & Tipler, F. J. (1986). The Anthropic Cosmological Principle. Oxford University Press.
- Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1978). Gravitation. San Francisco: Freeman.
- Hooft, Gerard 't. (1993). Dimensional reduction in quantum gravity. arXiv preprint gr-qc/9310026.
- Jackson, J. D. (2012). Classical Electrodynamics. Wiley.
- Rybicki, George B., & Lightman, Alan P. (1991). Radiative Processes in Astrophysics. John Wiley & Sons.
- Naber, Gregory L. (2012). The Geometry of Minkowski Spacetime. Springer.
- Gutfreund, Hanoch, & Renn, Jürgen. (2020). Einstein on Einstein: Autobiographical and Scientific Reflections. Princeton University Press.
- Kuhn, Thomas. (1970). The Nature of Scientific Revolutions. Chicago: University of Chicago.
- McCartney, Mark, & Whitaker, Andrew. (2003). George Johnstone Stoney 1826–1911, by James G O'Hara. In Physicists of Ireland (pp. 140–148). CRC Press.