Published April 28, 2025 | Version v1
Dataset Open

Credit Card Fraud Detection

Description

Credit Card Fraud Detection FAIR Exercise
This project implements an end-to-end, FAIR-compliant pipeline for detecting fraudulent credit-card transactions. It includes:

  • Publicly available data splits (70 % train, 15 % validation, 15 % test) in TU Wien’s DBRepo, each with a persistent identifier.

  • A RandomForest model trained on the data, serialized and deposited with metadata in TUWRD.

  • Evaluation outputs (confusion matrix, ROC curve, predictions) and a comprehensive model card.

  • Fully documented Jupyter notebooks and code under MIT, with environment and metadata files to enable reproducible reuse.

Files

Add MIT license.txt

Files (949.0 kB)

Name Size Download all
md5:9d3b370f6db878c5b07240f37fe29eda
1.1 kB Preview Download
md5:2d089022f16ae997053990998ad77eaf
567 Bytes Preview Download
md5:d3f5cd54ff3767d4e174a6a7fd4f3166
172.7 kB Preview Download
md5:c6d3e3f46b5b28b6ef66b735b82fbf4e
409.5 kB Preview Download
md5:cbd833770b938cca69f225a389892d0d
341 Bytes Preview Download
md5:922e12515f2f722603b8f0f1c09eeb0f
42 Bytes Preview Download
md5:70d3ba6061372703fc0c82b450a4e543
106.8 kB Preview Download
md5:845af2bd6397922b71d3123babd78cc4
38.7 kB Preview Download
md5:af5a1f95f38919f8674b628a595803dc
180.7 kB Preview Download
md5:eeb1d8ac04b02e42454b693a5f7aaecb
38.6 kB Preview Download

Additional details

Dates

Accepted
2025-04-28