Warming and latitude shape the non-consumptive effects of native and invasive alien crayfish predators on damselfly prey
- 1. Institute of Nature Conservation Polish Academy of Sciences, Krakow, Poland
- 2. Institute of Nature Conservation Polish Academy of Sciences, Krakow, Poland|Cairo University, Giza, Egypt
- 3. Laboratory of Evolutionary Stress Ecology and Ecotoxicology, Leuven, Belgium
Description
There is increasing concern that the effects of biological invasions may be magnified by other human-induced global changes. Here, we compare the non-consumptive effects imposed by invasive vs. native predators and how these (differential) responses to both predator types depend on warming and prey latitude. We raised damselfly larvae from central- and high-latitudes in incubators under two temperatures (current [20 °C] and warming [24 °C]) and further exposed them to one of three predator cues: noble (native), signal (invasive at both latitudes) and spiny-cheek (invasive at central- but absent at high latitudes) crayfish. Growth rate increased in central-latitude but decreased in high-latitude prey in response to both noble and signal crayfish. The spiny-cheek crayfish only reduced growth rate in high-latitude prey. Cues from all three crayfish species generally caused a higher net energy budget, but only under warming. Our results demonstrated that high-latitude prey were able to recognize a novel invasive predator (spiny-cheek crayfish) cue, and revealed differential growth responses of central- and high-latitude prey toward the shared invasive predator (signal crayfish). Our data provide rare support for the concern that global change factors may magnify the impact of both native and novel invasive predators.
Files
NB_article_141133.pdf
Files
(1.5 MB)
Name | Size | Download all |
---|---|---|
md5:70931d29955ba2404086281a942c3372
|
1.5 MB | Preview Download |
System files
(155.9 kB)
Name | Size | Download all |
---|---|---|
md5:a8ca9b307ed48885e927cfce89cdbb3e
|
155.9 kB | Download |
Linked records
Additional details
References
- Altwegg R (2002) Predator-induced life-history plasticity under time constraints in pool frogs. Ecology 83: 2542–2551. https://doi.org/10.1890/0012-9658(2002)083[2542:PILHPU]2.0.CO;2
- Amer NR, Stoks R, Antoł A, Sniegula S (2024) Microgeographic differentiation in thermal and antipredator responses and their carry-over effects across life stages in a damselfly. PLoS ONE 19: e0295707. https://doi.org/10.1371/journal.pone.0295707
- Antoł A, Sniegula S (2021) Damselfly eggs alter their development rate in the presence of an invasive alien cue but not a native predator cue. Ecology and Evolution 11: 9361–9369. https://doi.org/10.1002/ece3.7729
- Anton A, Cure K, Layman CA, Puntila R, Simpson MS, Bruno JF (2016) Prey naiveté to invasive lionfish Pterois volitans on Caribbean coral reefs. Marine Ecology Progress Series 544: 257–269. https://doi.org/10.3354/meps11553
- Anton A, Geraldi NR, Ricciardi A, Dick JTA (2020) Global determinants of prey naiveté to exotic predators. Proceedings. Biological Sciences 287: 20192978. https://doi.org/10.1098/rspb.2019.2978
- Artportalen (2024) Artportalen (Swedish Species Observation System). ArtDatabanken. dataset/occurrence. http://www.gbif.se/ipt/resource?r=artdata
- Babik W, Dudek K, Marszałek M, Palomar G, Antunes B, Sniegula S (2023) The genomic response to urbanization in the damselfly Ischnura elegans. Evolutionary Applications 16: 1805–1818. https://doi.org/10.1111/eva.13603
- Banks PB, Dickman CR (2007) Alien predation and the effects of multiple levels of prey naiveté. Trends in Ecology & Evolution 22: 229–230. https://doi.org/10.1016/j.tree.2007.02.006
- Bartoń K (2024) MuMIn: Multi-Model Inference. R package version 1.48.4. https://CRAN.R-project.org/package=MuMIn
- Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biology Letters 12: 20150623. https://doi.org/10.1098/rsbl.2015.0623
- Bourdeau PE, Pangle KL, Reed EM, Peacor SD (2013) Finely tuned response of native prey to an invasive predator in a freshwater system. Ecology 94: 1449–1455. https://doi.org/10.1890/12-2116.1
- Carthey AJ, Banks PB (2014) Naïveté in novel ecological interactions: Lessons from theory and experimental evidence. Biological Reviews of the Cambridge Philosophical Society 89: 932–949. https://doi.org/10.1111/brv.12087
- Conrad K, Willson K, Harvey I, Thomas C, Sherratt T (1999) Dispersal characteristics of seven odonate species in an agricultural landscape. Ecography 22: 524–531. https://doi.org/10.1111/j.1600-0587.1999.tb00541.x
- Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Hayley Books, Colchester, UK.
- Corbet PS, Suhling F, Soendgerath D (2006) Voltinism of Odonata: A review. International Journal of Odonatology 9: 1–44. https://doi.org/10.1080/13887890.2006.9748261
- Cox JG, Lima SL (2006) Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends in Ecology & Evolution 21: 674–680. https://doi.org/10.1016/j.tree.2006.07.011
- Culler LE, McPeek MA, Ayres MP (2014) Predation risk shapes thermal physiology of a predaceous damselfly. Oecologia 176: 653–660. https://doi.org/10.1007/s00442-014-3058-8
- De Block M, Stoks R (2008) Compensatory growth and oxidative stress in a damselfly. Proceedings. Biological Sciences 275: 781–785. https://doi.org/10.1098/rspb.2007.1515
- Debecker S, Stoks R (2019) Pace of life syndrome under warming and pollution: Integrating life history, behavior, and physiology across latitudes. Ecological Monographs 89: e01332. https://doi.org/10.1002/ecm.1332
- Dijkstra K-D, Schröter A (2020) Field guide to the dragonflies of Britain and Europe. Bloomsbury Publishing.
- Dinh Van K, Janssens L, Debecker S, Stoks R (2014) Temperature‐and latitude‐specific individual growth rates shape the vulnerability of damselfly larvae to a widespread pesticide. Journal of Applied Ecology 51: 919–928. https://doi.org/10.1111/1365-2664.12269
- Fontana-Bria L, Selfa J, Tur C, Frago E (2017) Early exposure to predation risk carries over metamorphosis in two distantly related freshwater insects. Ecological Entomology 42: 255–262. https://doi.org/10.1111/een.12382
- Fox J, Weisberg S (2019) An R Companion to Applied Regression, Third edition. Sage, Thousand Oaks CA. https://www.john-fox.ca/Companion/ [Accessed 26 March 2025]
- Freeman AS, Byers JE (2006) Divergent induced responses to an invasive predator in marine mussel populations. Science 313: 831–833. https://doi.org/10.1126/science.1125485
- Gall ML, Chaput-Bardy A, Husté A (2017) Context-dependent local movements of the blue-tailed damselfly, Ischnura elegans: Effects of pond characteristics and the landscape matrix. Journal of Insect Conservation 21: 243–256. https://doi.org/10.1007/s10841-017-9971-5
- Hawlena D, Schmitz OJ (2010) Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. American Naturalist 176: 537–556. https://doi.org/10.1086/656495
- Ion MC, Bloomer CC, Bărăscu TI, Oficialdegui FJ, Shoobs NF, Williams BW, Scheers K, Clavero M, Grandjean F, Collas M (2024) World of CrayfishTM: A web platform towards real-time global mapping of freshwater crayfish and their pathogens. PeerJ 12: e18229. https://doi.org/10.7717/peerj.18229
- Janssens L, Van Dievel M, Stoks R (2015) Warming reinforces nonconsumptive predator effects on prey growth, physiology, and body stoichiometry. Ecology 96: 3270–3280. https://doi.org/10.1890/15-0030.1
- Kohler SL, McPeek MA (1989) Predation risk and the foraging behavior of competing stream insects. Ecology 70: 1811–1825. https://doi.org/10.2307/1938114
- Kouba A, Petrusek A, Kozák P (2014) Continental-wide distribution of crayfish species in Europe: update and maps. Knowledge and Management of Aquatic Ecosystems: 05. https://doi.org/10.1051/kmae/2014007
- Krams I, Kivleniece I, Kuusik A, Krama T, Mänd R, Rantala MJ, Znotiņa S, Freeberg TM, Mänd M (2013) Predation promotes survival of beetles with lower resting metabolic rates. Entomologia Experimentalis et Applicata 148: 94–103. https://doi.org/10.1111/eea.12079
- Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: Tests in linear mixed effects models. Journal of Statistical Software 82. https://doi.org/10.18637/jss.v082.i13
- Lagos PA, Herberstein ME (2017) Are males more scared of predators? Differential change in metabolic rate between males and females under predation risk. Physiology & Behavior 173: 110–115. https://doi.org/10.1016/j.physbeh.2017.02.002
- Lienart GDH, Mitchell MD, Ferrari MCO, McCormick MI (2014) Temperature and food availability affect risk assessment in an ectotherm. Animal Behaviour 89: 199–204. https://doi.org/10.1016/j.anbehav.2013.12.031
- Lopez BE, Allen JM, Dukes JS, Lenoir J, Vilà M, Blumenthal DM, Beaury EM, Fusco EJ, Laginhas BB, Morelli TL, O'Neill MW, Sorte CJB, Maceda-Veiga A, Whitlock R, Bradley BA (2022) Global environmental changes more frequently offset than intensify detrimental effects of biological invasions. Proceedings of the National Academy of Sciences of the United States of America 119: e2117389119. https://doi.org/10.1073/pnas.2117389119
- Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D (2021) performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software: 6. https://doi.org/10.31234/osf.io/vtq8f
- Ludwig D, Rowe L (1990) Life-history strategies for energy gain and predator avoidance under time constraints. American Naturalist 135: 686–707. https://doi.org/10.1086/285069
- Magnusson A, Skaug H, Nielsen A, Berg C, Kristensen K, Maechler M, van Bentham K, Bolker B, Brooks M, Brooks MM (2017) Package 'glmmTMB.' R Package Version 0.2. 0.
- Martin CW (2014) Naïve prey exhibit reduced antipredator behavior and survivorship. PeerJ 2: e665. https://doi.org/10.7717/peerj.665
- Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI (2021) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change: 2.
- McPeek MA, Grace M, Richardson JM (2001) Physiological and behavioral responses to predators shape the growth/predation risk trade‐off in damselflies. Ecology 82: 1535–1545. https://doi.org/10.1890/0012-9658(2001)082[1535:PABRTP]2.0.CO;2
- Mironov DV (2008) Parameterization of lakes in numerical weather prediction. Description of a lake model, vol 11. COSMO Technical Report. Deutscher Wetterdienst, 1–41.
- Mitchell MD, Harborne AR (2020) Non-consumptive effects in fish predator–prey interactions on coral reefs. Coral Reefs 39: 867–884. https://doi.org/10.1007/s00338-020-01920-y
- Norling U (2021) Growth, winter preparations and timing of emergence in temperate zone Odonata: Control by a succession of larval response patterns. International Journal of Odonatology 24: 1–36. https://doi.org/10.23797/2159-6719_24_1
- Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O'Hara R, Simpson G, Solymos P, Stevens M, Wagner H (2013) Vegan: Community Ecology Package. R Package Version. 2.0-10. CRAN.
- Orłowska L, Romanowski J (2023) Alien prey in the diet of the indigenous Eurasian otter in Vistula River, Poland. BioInvasions Records 12: 625–636. https://doi.org/10.3391/bir.2023.12.2.25
- Owen CL, Bracken-Grissom H, Stern D, Crandall KA (2015) A synthetic phylogeny of freshwater crayfish: Insights for conservation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 370: 20140009. https://doi.org/10.1098/rstb.2014.0009
- Palomar G, Wos G, Stoks R, Sniegula S (2023) Latitude-specific urbanization effects on life history traits in the damselfly Ischnura elegans. Evolutionary Applications 16: 1503–1515. https://doi.org/10.1111/eva.13583
- Pinya S, Tejada S, Capó X, Sureda A (2016) Invasive predator snake induces oxidative stress responses in insular amphibian species. The Science of the Total Environment 566–567: 57–62. https://doi.org/10.1016/j.scitotenv.2016.05.035
- Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86: 501–509. https://doi.org/10.1890/04-0719
- R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing [December 11, 2017]
- R Studio Team (2015) RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/
- Siepielski AM, Hasik AZ, Ping T, Serrano M, Strayhorn K, Tye SP (2020) Predators weaken prey intraspecific competition through phenotypic selection. Ecology Letters 23: 951–961. https://doi.org/10.1111/ele.13491
- Sih A, Bolnick DI, Luttbeg B, Orrock JL, Peacor SD, Pintor LM, Preisser E, Rehage JS, Vonesh JR (2010) Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119: 610–621. https://doi.org/10.1111/j.1600-0706.2009.18039.x
- Śniegula S, Johansson F, Nilsson-Örtman V (2012) Differentiation in developmental rate across geographic regions: A photoperiod driven latitude compensating mechanism? Oikos 121: 1073–1082. https://doi.org/10.1111/j.1600-0706.2011.20015.x
- Sniegula S, Raczyński M, Golab MJ, Johansson F (2020) Effects of predator cues carry over from egg and larval stage to adult life-history traits in a damselfly. Freshwater Science 39: 804–811. https://doi.org/10.1086/711374
- Sniegula S, Konczarek D, Bonk M, Antoł A, Amer NR, Stoks R (2025) Non-consumptive effects of native, alien and invasive alien crayfish on damselfly egg life history and carry-over effects on larval physiology. NeoBiota 97: 215–235. https://doi.org/10.3897/neobiota.97.139760
- Stanek Ł, Wiehle D, Szybak F (2015) Inwentaryzacja raków występujących na terenie użytku ekologicznego Staw Dąbski. Wydział Kształtowania Środowiska UMK, Kraków, 3–21.
- Stoks R, McPeek MA (2003) Antipredator Behavior and Physiology Determine Lestes Species Turnover Along the Pond-Permanence Gradient. Ecology 84: 3327–3338. https://doi.org/10.1890/02-0696
- Stoks R, De Block M, McPeek MA (2005a) Alternative growth and energy storage responses to mortality threats in damselflies. Ecology Letters 8: 1307–1316. https://doi.org/10.1111/j.1461-0248.2005.00840.x
- Stoks R, De Block M, Van De Meutter F, Johansson F (2005b) Predation cost of rapid growth: Behavioural coupling and physiological decoupling. Journal of Animal Ecology, 708–715. https://doi.org/10.1111/j.1365-2656.2005.00969.x
- Stoks R, Block MD, Slos S, Doorslaer WV, Rolff J (2006) Time constraints mediate predator‐induced plasticity in immune function, condition, and life history. Ecology 87: 809–815. https://doi.org/10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2
- Stoks R, Swillen I, De Block M (2012) Behaviour and physiology shape the growth accelerations associated with predation risk, high temperatures and southern latitudes in Ischnura damselfly larvae. Journal of Animal Ecology 81: 1034–1040. https://doi.org/10.1111/j.1365-2656.2012.01987.x
- Teder T, Kaasik A (2023) Early-life food stress hits females harder than males in insects: A meta-analysis of sex differences in environmental sensitivity. Ecology Letters 26: 1419–1431. https://doi.org/10.1111/ele.14241
- Townsend CR (2003) Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conservation Biology 17: 38–47. https://doi.org/10.1046/j.1523-1739.2003.02017.x
- Van Buskirk J, Krügel A, Kunz J, Miss F, Stamm A (2014) The rate of degradation of chemical cues indicating predation risk: An experiment and review. Ethology 120: 942–949. https://doi.org/10.1111/eth.12266
- Van Dievel M, Janssens L, Stoks R (2016) Short-and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms. Oecologia 181: 347–357. https://doi.org/10.1007/s00442-015-3440-1
- Van Dievel M, Janssens L, Stoks R (2019) Additive bioenergetic responses to a pesticide and predation risk in an aquatic insect. Aquatic Toxicology (Amsterdam, Netherlands) 212: 205–213. https://doi.org/10.1016/j.aquatox.2019.05.010
- Verheyen J, Stoks R (2020) Negative bioenergetic responses to pesticides in damselfly larvae are more likely when it is hotter and when temperatures fluctuate. Chemosphere 243: 125369. https://doi.org/10.1016/j.chemosphere.2019.125369
- Wos G, Palomar G, Marszałek M, Babik W, Sniegula S (2023) The effect of temperature and invasive alien predator on genetic and phenotypic variation in the damselfly Ischnura elegans: Cross-latitude comparison. Frontiers in Zoology 20: 13. https://doi.org/10.1186/s12983-023-00494-z
- Zeuss D, Brunzel S, Brandl R (2017) Environmental drivers of voltinism and body size in insect assemblages across Europe. Global Ecology and Biogeography 26: 154–165. https://doi.org/10.1111/geb.12525