Published April 15, 2025 | Version V1.0
Dataset Open

Hydrodynamic Hybrid Deep-Learning for Flood Modeling HDL-FM

  • 1. ROR icon Villanova University

Description

This dataset supports the research presented in the paper "Spatiotemporal flood depth and velocity dynamics using a convolutional neural network within a sequential Deep-Learning framework" (Environmental Modelling & Software, https://doi.org/10.1016/j.envsoft.2024.106307). 

It contains preprocessed inputs and outputs for training and testing a hybrid deep learning framework that integrates Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) models to simulate hydrodynamic flood dynamics. The complete source code for the hydrodynamic deep learning framework is available on GitHub: https://github.com/m-fathi-said/Flood-Modeling-HDL-FM

Key Features

  • Format: Four .pt files (PyTorch-compatible tensors)

    • train_x.pt: Model inputs (e.g., topography, discharge)

    • train_y.pt: Model targets (water depth, velocity magnitude, and flow direction)

    • test_x.pt: Same inputs for testing part

    • test_y.pt: Same targets for testing part

  • Scope: Captures river-floodplain interactions and flow properties

Recommended Citation

Fathi, M.M., Liu, Z., Fernandes, A.M., Hren, M.T., Terry, D.O., Nataraj, C. and Smith, V., 2025. Spatiotemporal flood depth and velocity dynamics using a convolutional neural network within a sequential Deep-Learning framework. Environmental Modelling & Software185, p.106307.

 

Files

Files (16.3 GB)

Name Size Download all
md5:1138ed3d5aefc65f485869088e02ed0d
2.7 GB Download
md5:cf798279df5ab21bf917434e722c1138
2.0 GB Download
md5:5f510907e023f806c38d68a596e4e8aa
6.7 GB Download
md5:879b15b201a9174fcf6a4e957df639da
5.0 GB Download

Additional details