Daily Averaged Accumulation Mode Particle Number Concentrations (N100) from 35 Stations (2003-2019)
Authors/Creators
-
Ovaska, Aino1
- Rauth, Elio2, 1
-
Holmberg, Daniel1
-
Artaxo, Paulo3, 4
-
Backman, John5
-
Bergmans, Benjamin6
- Collins, Don7
-
de Menezes Franco, Marco Aurélio4
-
Gani, Shahzad8
-
Harrison, Roy M.9
-
Hooda, Rakesh K.5
-
Hussein, Tareq10
- Hyvärinen, Antti-Pekka5
-
Jaars, Kerneels11
-
Kristensson, Adam12
-
Kulmala, Markku1
-
Laakso, Lauri5
-
Laaksonen, Ari5, 13
- Mihalopoulos, Nikolaos14
-
O'Dowd, Colin15
-
Ondracek, Jakub16
-
Petäjä, Tuukka1
-
Plauškaitė, Kristina17
-
Pöhlker, Mira18
-
Qi, Ximeng19
- Tunved, Peter20
- Vakkari, Ville5
-
Wiedensohler, Alfred18
-
Puolamäki, Kai1
-
Nieminen, Tuomo1
-
Kerminen, Veli-Matti1
-
Sinclair, Victoria A.1
-
Paasonen, Pauli1
-
1.
University of Helsinki
- 2. Department of Remote Sensing, Institute of Geography and Geology, University of Würzburg, Germany
- 3. Center for Amazonian Sustainability - USP
-
4.
Universidade de São Paulo
-
5.
Finnish Meteorological Institute
-
6.
Institut Scientifique de Service Public
-
7.
University of California, Riverside
-
8.
Indian Institute of Technology Delhi
-
9.
University of Birmingham
-
10.
University of Jordan
-
11.
North-West University
-
12.
Lund University
- 13. University of Eastern Finland
-
14.
University of Crete
-
15.
National University of Ireland
-
16.
Czech Academy of Sciences, Institute of Chemical Process Fundamentals
- 17. SRI Center for Physical Sciences and Technology (FTMC)
-
18.
Leibniz Institute for Tropospheric Research
-
19.
Nanjing University
-
20.
Stockholm University
Description
This dataset contains the number concentrations of particles with dry diameters larger than 100 nm (N100) calculated from particle number size distribution measurements. The dataset includes varying lengths of daily averaged data from 35 measurement stations worldwide, collected during the period from 2003 to 2019.
The dataset was utilized in the study titled “Global fields of daily accumulation-mode particle number concentrations using in situ observations, reanalysis data, and machine learning” to train and validate machine learning models. For more detailed information on the dataset, including the specific measurement periods, data processing methods, and station details, please refer to the publication.
Files
N100_measurement_data.csv
Files
(2.1 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:163e4ed42f696d0300bd2761e6a39dfd
|
2.0 MB | Preview Download |
|
md5:c2d39121e6c73b35e08186068177946f
|
2.6 kB | Download |