ARTIFICIAL INTELLIGENCE IN THE CAD PROCESS: MACHINE LEARNING MODELS, GENERATIVE OPTIMISATION, AND THEIR IMPACT ON DESIGN
Contributors
Research group:
- 1. 1 PhD Student at Technical University of Cluj-Napoca, Department of Manufacturing Engineering, B-dul Muncii, no. 103-105, Cluj-Napoca, Romania, E-mail: alexandrina.buga.phd@gmail.com 2 Technical University of Cluj-Napoca, Department of Manufacturing Engineering, B-dul Muncii, no. 103-105, Cluj-Napoca, Romania, E-mail: marian.borzan@tcm.utcluj.ro 3 Technical University of Cluj-Napoca, Department of Manufacturing Engineering, B-dul Muncii, no. 103-105, Cluj-Napoca, Romania, E-mail: adrian.trif@tcm.utcluj.ro
Description
: The integration of Artificial Intelligence (AI) into Computer-Aided Design (CAD) is transforming the product development process by enhancing efficiency, accuracy, and innovation. AI-driven approaches, including Machine Learning Models (MLMs) and optimisation algorithms, automate design processes, improve decision-making, and enable the exploration of optimised solutions that transcend traditional design limitations. Despite these advancements, the adoption of AI in CAD presents significant technological, ethical, and professional challenges. This study aims to analyse the impact of AI on CAD workflows, focusing on its role in automating repetitive tasks, optimising manufacturability, enhancing design validation through AI-assisted simulation, and facilitating collaborative workflows in distributed teams. Additionally, it explores the challenges associated with AI implementation and the future prospects of AI-driven CAD systems. The research is based on a systematic review of AI applications in CAD, examining Machine Learning (ML) techniques such as generative design, reinforcement learning, and genetic algorithms. Furthermore, the study also evaluates AI's influence on Product Lifecycle Management (PLM) and team collaboration, while addressing industry adoption barriers. Findings indicate that AI significantly reduces design time, enhances creativity through generative models, and improves design validation via automated simulations. AI-powered tools provide real-time feedback, streamline collaboration, and enable continuous optimisation of product performance and sustainability. Ultimately, AI-assisted CAD marks a paradigm shift in engineering and design.
Files
Borzan 1.pdf
Files
(666.5 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:5bfd9dfcdb43bde03e61dc4a6f64d01d
|
666.5 kB | Preview Download |
Additional details
Software
- Repository URL
- https://www.ajme.ro
- Development Status
- Active
References
- Andrews, R. W., Lilly, J. M., Srivastava, D., & Feigh, K. M. (2023). The role of shared mental models in human-AI teams: A theoretical review. Theoretical Issues in Ergonomics Science, 24(2), 129–175. Available at: https://doi.org/10.1080/1463922X.2022.2061080 Accessed: 2024-09-24. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., ... & Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. Available at: https://doi.org/10.1016/j.inffus.2019.12.012 Accessed: 2024-09-25. Athavale, J., Baldovin, A., Graefe, R., Paulitsch, M., & Rosales, R. (2020). AI and reliability trends in safety-critical autonomous systems on ground and air. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), 74–77. Available at: https://doi.org/10.1109/DSN-W50199.2020.00024 Accessed: 2024-09-22. Baturynska, I., & Martinsen, K. (2021). Prediction of geometry deviations in additive manufactured parts: Comparison of linear regression with machine learning algorithms. Journal of Intelligent Manufacturing, 32(1), 179–200. Available at: https://doi.org/10.1007/s10845-020-01567-0 Accessed: 2024-09-22. Brown, N. C., & Mueller, C. T. (2019). Design variable analysis and generation for performance-based parametric modelling in architecture. International Journal of Architectural Computing, 17(1), 36–52. Available at: https://doi.org/10.1177/1478077118799491 Accessed: 2024-09-22. Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 52(1), 477–508. Available at: https://doi.org/10.1146/annurev-fluid-010719-060214 Accessed: 2024-09-22. Bryndin, E. (2020). Development of artificial intelligence by ensembles of virtual agents with mobile interaction. Automation, Control and Intelligent Systems, 8(1), 1–8. Available at: https://doi.org/10.11648/j.acis.20200801.11 Accessed: 2024-10-13. Chang, C. W., & Dinh, N. T. (2019). Classification of machine learning frameworks for data-driven thermal fluid models. International Journal of Thermal Sciences, 135, 559–579. Available at: https://doi.org/10.1016/j.ijthermalsci.2018.09.002 Accessed: 2024-09-25. Coenders, J. L. (2021). Next generation parametric design. Journal of the International Association for Shell and Spatial Structures, 62(2), 153–166. Available at: https://doi.org/10.20898/j.iass.2021.018 Accessed: 2024-09-22. Cooper, A. F., Levy, K., & De Sa, C. (2021). Accuracy-efficiency trade-offs and accountability in distributed ML systems. Proceedings of the 1st ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, 1–11. Available at: https://doi.org/10.1145/3465416.3483289 Accessed: 2024-11-08. Davoudi, K., & Thulasiraman, P. (2021). Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem. Simulation, 97(8), 511–527. Available at: https://doi.org/10.1177/0037549721996031 Accessed: 2024-09-27. Di Filippo, A., Lombardi, M., Lorusso, A., Marongiu, F., & Santaniello, D. (2021). Generative design for project optimization. DMSVIVA, 110–115. Available at: https://doi.org/10.18293/DMSVIVA2021-014 Accessed: 2024-09-22. Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., ... & Ranjan, R. (2023). Explainable AI (XAI): Core ideas, techniques, and solutions. ACM Computing Surveys, 55(9), 1–33. Available at: https://doi.org/10.1145/3561048 Accessed: 2024-12-03. Elahi, M., Afolaranmi, S. O., Martinez Lastra, J. L., & Perez Garcia, J. A. (2023). A comprehensive literature review of the applications of AI techniques through the lifecycle of industrial equipment. Discover Artificial Intelligence, 3(1), 43. Available at: https://doi.org/10.1007/s44163-023-00089-x Accessed: 2024-09-25. Faheem, M., Aslam, M., & Kakolu, S. (2022). Artificial intelligence in investment portfolio optimization: A comparative study of machine learning algorithms. International Journal of Science and Research Archive, 6(1), 335–342. Available at: https://doi.org/10.30574/ijsra.2022.6.1.0131 Accessed: 2024-11-25. Ghalandari, M., Ziamolki, A., Mosavi, A., Shamshirband, S., Chau, K. W., & Bornassi, S. (2019). Aeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experiments. Engineering Applications of Computational Fluid Mechanics, 13(1), 892–904. Available at: https://doi.org/10.1080/19942060.2019.1649196 Accessed: 2024-09-26. Gmeiner, F., Yang, H., Yao, L., Holstein, K., & Martelaro, N. (2023). Exploring challenges and opportunities to support designers in learning to co-create with AI-based manufacturing design tools. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1–20. Available at: https://doi.org/10.1145/3544548.3580999 Accessed: 2024-09-22. Goh, G. D., Sing, S. L., & Yeong, W. Y. (2021). A review on machine learning in 3D printing: Applications, potential, and challenges. Artificial Intelligence Review, 54(1), 63–94. Available at: https://doi.org/10.1007/s10462-020-09876-9 Accessed: 2025-01-26. Hapuwatte, B. M., & Jawahir, I. S. (2019). A total life cycle approach for developing predictive design methodologies to optimize product performance. Procedia Manufacturing, 33, 11–18. Available at: https://doi.org/10.1016/j.promfg.2019.04.003 Accessed: 2024-09-25. Harada, T., & Alba, E. (2020). Parallel genetic algorithms: A useful survey. ACM Computing Surveys (CSUR), 53(4), 1–39. Available at: https://doi.org/10.1145/3400031 Accessed: 2024-12-08. Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., ... & Hussain, A. (2024). Interpreting black-box models: A review on explainable artificial intelligence. Cognitive Computation, 16(1), 45–74. Available at: https://doi.org/10.1007/s12559-023-10179-8 Accessed: 2024-10-16. Jenis, J., Ondriga, J., Hrcek, S., Brumercik, F., Cuchor, M., & Sadovsky, E. (2023). Engineering applications of artificial intelligence in mechanical design and optimization. Machines, 11(6), 577. Available at: https://doi.org/10.3390/machines11060577 Accessed: 2024-11-16. Jones, S., Thompson, K., Porter, B., Shepherd, M., Sapkaroski, D., Grimshaw, A., & Hargrave, C. (2024). Automation and artificial intelligence in radiation therapy treatment planning. Journal of Medical Radiation Sciences, 71(2), 290–298. Available at: https://doi.org/10.1002/jmrs.729 Accessed: 2024-09-22. Kop, M. (2019). AI & intellectual property: Towards an articulated public domain. Texas Intellectual Property Law Journal, 28, 297, https://tiplj.org/wp-content/uploads/Volumes/v28/Kop_Final.pdf Available at: http://dx.doi.org/10.2139/ssrn.3409715 Accessed: 2024-10-16. Lazaroiu, G., Androniceanu, A., Grecu, I., Grecu, G., & Neguriță, O. (2022). Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing. Oeconomia Copernicana, 13(4), 1047–1080. Available at https://doi.org/10.24136/oc.2022.030 Accessed: 2024-09-22. Li, C., Zheng, P., Yin, Y., Wang, B., & Wang, L. (2023). Deep reinforcement learning in smart manufacturing: A review and prospects. CIRP Journal of Manufacturing Science and Technology, 40, 75–101. Available at: https://doi.org/10.1016/j.cirpj.2022.11.003 Accessed: 2024-09-23. Liu, C., Le Roux, L., Körner, C., Tabaste, O., Lacan, F., & Bigot, S. (2022). Digital twin-enabled collaborative data management for metal additive manufacturing systems. Journal of Manufacturing Systems, 62, 857–874. Available at: https://doi.org/10.1016/j.jmsy.2020.05.010 Accessed: 2024-09-25. Lu, Y., Xu, X., & Wang, L. (2020). Smart manufacturing process and system automation–a critical review of the standards and envisioned scenarios. Journal of Manufacturing Systems, 56, 312–325. Available at: https://doi.org/10.1016/j.jmsy.2020.06.010 Accessed: 2024-09-25. Lupi, F., Freitas, N., Arvana, M., Rocha, A. D., Maffei, A., Barata, J., & Lanzetta, M. (2024). Next-generation vision inspection systems: A pipeline from 3D model to ReCo file. Journal of Intelligent Manufacturing, 1–24. Available at: https://doi.org/10.1007/s10845-024-02456-6 Accessed: 2024-09-25. Maghawry, A., Hodhod, R., Omar, Y., & Kholief, M. (2021). An approach for optimizing multi-objective problems using hybrid genetic algorithms. Soft Computing, 25, 389–405. Available at: https://doi.org/10.1007/s00500-020-05149-3 Accessed: 2024-11-23. Mei, Y., Chen, Q., Lensen, A., Xue, B., & Zhang, M. (2022). Explainable artificial intelligence by genetic programming: A survey. IEEE Transactions on Evolutionary Computation, 27(3), 621–641. Available at: https://doi.org/10.1109/TEVC.2022.3225509 Accessed: 2024-11-23. Menos-Aikateriniadis, C., Lamprinos, I., & Georgilakis, P. S. (2022). Particle swarm optimization in residential demand-side management: A review on scheduling and control algorithms for demand response provision. Energies, 15(6), 2211. Available at: https://doi.org/10.3390/en15062211 Accessed: 2024-12-08. Mirza, A., & Iqbal, R. (2024). Harnessing AI in IT operations: Transforming automation and efficiency. Asian American Research Letters Journal, 1(9), 22–34. Available at: https://doi.org/10.5281/cdv3hw65 Accessed: 2024-09-22. Mohseni, S., Zarei, N., & Ragan, E. D. (2021). A multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Transactions on Interactive Intelligent Systems (TiiS), 11(3-4), 1–45. Available at: https://doi.org/10.1145/3387166 Accessed: 2024-09-22. Nasir, O., & Kamal, M. A. (2023). Exploring the role of parametric architecture in building design: An inclusive approach. Facta Universitatis, Series: Architecture and Civil Engineering, 095–114. Available at: https://doi.org/10.2298/FUACE230114007N Accessed: 2024-09-24. Paramesha, M., Rane, N. L., & Rane, J. (2024). Big data analytics, artificial intelligence, machine learning, internet of things, and blockchain for enhanced business intelligence. Partners Universal Multidisciplinary Research Journal, 1(2), 110–133. Available at: https://doi.org/10.5281/zenodo.12827323 Accessed: 2024-09-22. Patel, K., Beeram, D., Ramamurthy, P., Garg, P., & Kumar, S. (2024). AI-enhanced design: Revolutionizing methodologies and workflows. Development (IJAIRD), 2(1), 135–157. Available at: https://iaeme.com/Home/issue/IJAIRD?Volume=2&Issue=1 Accessed: 2024-09-22. Rahi, P., Jakhete, M. D., & Duvey, A. A. (2024). Optimizing sustainable project management life cycle using generative AI modeling. Generative AI and LLMs: Natural Language Processing and Generative Adversarial Networks, 213. Available at: https://doi.org/10.1515/9783111425078 Accessed: 2024-12-08. Rahman, M. A., Saleh, T., Jahan, M. P., McGarry, C., Chaudhari, A., Huang, R., ... & Shakur, M. S. (2023). Review of intelligence for additive and subtractive manufacturing: Current status and future prospects. Micromachines, 14(3), 508. Available at: https://doi.org/10.3390/mi14030508 Accessed: 2024-12-08. Rane, N., Choudhary, S., & Rane, J. (2023). Enhanced product design and development using artificial intelligence (AI), virtual reality (VR), augmented reality (AR), 4D/5D/6D printing, Internet of Things (IoT), and blockchain: A review. Virtual Reality (VR), Augmented Reality (AR) D, 4. Available at: https://doi.org/10.2139/ssrn.4644059 Accessed: 2024-09-22. Sabbella, D. S., & Singh, A. (2020). Artificial intelligence in 3D CAD modelling. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 1–5. Available at: https://doi.org/10.1109/ic-ETITE47903.2020.29 Accessed: 2024-09-21. Schoenherr, J. R., Abbas, R., Michael, K., Rivas, P., & Anderson, T. D. (2023). Designing AI using a human-centered approach: Explainability and accuracy toward trustworthiness. IEEE Transactions on Technology and Society, 4(1), 9–23. Available at: https://doi.org/10.1109/TTS.2023.3257627 Accessed: 2024-09-22. Shoushtari, F., Daghighi, A., & Ghafourian, E. (2024). Application of artificial intelligence in project management. International Journal of Industrial Engineering and Operational Research, 6(2), 49–63. Available at: https://bgsiran.ir/journal/ojs-3.1.1-4/index.php/IJIEOR/article/view/89/70 Accessed: 2024-09-22. Siderska, J. (2020). Robotic process automation—a driver of digital transformation? Engineering Management in Production and Services, 12(2), 21–31. Available at: https://doi.org/10.2478/emj-2020-0009 Accessed: 2024-12-08. Sinha, S., & Lee, Y. M. (2024). Challenges with developing and deploying AI models and applications in industrial systems. Discover Artificial Intelligence, 4(1), 55. Available at: https://doi.org/10.1007/s44163-024-00151-2 Accessed: 2024-09-22. Sun, Y., Yan, B., & Shao, Z. (2024). AI large models bring great opportunities to reusable design of CAD software. Computer Science and Information Systems, 00, 46–46. Available at: https://doi.org/10.2298/CSIS230907046S Accessed: 2025-02-03. Toussi, H. E. (2020). The application of evolutionary, generative, and hybrid approaches in architecture design optimization. NEU Journal of Faculty of Architecture (NEU-JFA), 2(2), 1–20. Available at: https://dergi.neu.edu.tr/index.php/neujfa/article/view/238/101 Accessed: 2024-11-18. Van Der Aalst, W. M. (2021). Hybrid intelligence: To automate or not to automate, that is the question. International Journal of Information Systems and Project Management, 9(2), 5–20. Available at: https://doi.org/10.12821/ijispm090201 Accessed: 2024-11-18. Vaneker, T., Bernard, A., Moroni, G., Gibson, I., & Zhang, Y. (2020). Design for additive manufacturing: Framework and methodology. CIRP Annals, 69(2), 578–599. Available at: https://doi.org/10.1016/j.cirp.2020.05.006 Accessed: 2024-09-19. Varela, L., Putnik, G., & Romero, F. (2022). The concept of collaborative engineering: A systematic literature review. Production & Manufacturing Research, 10(1), 784–839. Available at: https://doi.org/10.1080/21693277.2022.2133856 Accessed: 2024-09-24. Verganti, R., Vendraminelli, L., & Iansiti, M. (2020). Innovation and design in the age of artificial intelligence. Journal of Product Innovation Management, 37(3), 212–227. Available at: https://doi.org/10.1111/jpim.12523 Accessed: 2025-02-03. Wang, L., Liu, Z., Liu, A., & Tao, F. (2021). Artificial intelligence in product lifecycle management. The International Journal of Advanced Manufacturing Technology, 114, 771–796. Available at: https://doi.org/10.1007/s00170-021-06882-1 Accessed: 2024-09-22. Zhang, Q., Lu, J., & Jin, Y. (2021). Artificial intelligence in recommender systems. Complex & Intelligent Systems, 7(1), 439–457. Available at: https://doi.org/10.1007/s40747-020-00212-w Accessed: 2024-09-22. Zhao, S., & De Angelis, E. (2019). Performance-based generative architecture design: A review on design problem formulation and software utilization. Journal of Integrated Design and Process Science, 22(3), 55–76. Available at: https://doi.org/10.3233/JID190001 Accessed: 2024-09-24. Zong, C., Li, Q., Li, K., Song, X., Chen, D., Li, X., & Wang, X. (2022). Computational fluid dynamics analysis and extended adaptive hybrid functions model-based design optimization of an explosion-proof safety valve. Engineering Applications of Computational Fluid Mechanics, 16(1), 296–315. Available at: https://doi.org/10.1080/19942060.2021.2010602 Accessed: 2024-09-17.