Published April 2, 2025
| Version v1
Publication
Open
Fractal-Torsional-Spectral Extensions to Wiles' Modularity Theorem
Creators
Description
Wiles’ modularity theorem establishes that every semistable elliptic curve E/Q is modular, meaning its L-function coincides with that of a modular form f: L(s, E) = L(s, f). This result is achieved via a deformation-theoretic framework that links the Galois representation ρE, : Gal(Q/Q) → GL2(Z) to Hecke algebras through the R = T isomorphism. The proof employs techniques from commutative algebra, deformation theory, and the introduction of Taylor-Wiles primes to control Selmer groups. A fundamental consequence is the resolution of Fermat’s Last Theorem, as the modularity of the Frey elliptic curve contradicts prior results, eliminating any possible counterexamples.
Files
Fractal-To.pdf
Files
(4.4 MB)
Name | Size | Download all |
---|---|---|
md5:1bc6d6de4e25b424255e14bcb53d90a2
|
132.7 kB | Preview Download |
md5:e2b486225eec8e548c02d4cce571f150
|
20.5 kB | Preview Download |
md5:d9416b500ab91fe23906c247fc7b3b88
|
37.1 kB | Preview Download |
md5:c195bf81199ca669582aaec447e629c1
|
26.9 kB | Preview Download |
md5:828b2ac1e70910047b55959114f9e940
|
124.0 kB | Preview Download |
md5:0182e86278920b4cc8b3a6d073d8f4d7
|
35.2 kB | Preview Download |
md5:98ad6338f330702b7052245649ebd856
|
152.2 kB | Preview Download |
md5:980e77c7d1210c904652b76719afa74f
|
62.4 kB | Preview Download |
md5:c5c8adef37798f61097ecfcd0fe2d342
|
7.0 kB | Preview Download |
md5:1d832362f3fd51868efa765de38bc590
|
32.7 kB | Preview Download |
md5:caeb9cfa847f74e9b626b9ccf0a7cf83
|
31.0 kB | Preview Download |
md5:ce0f79ce349e8b265e206852dba3f04d
|
16.9 kB | Preview Download |
md5:6e0e24be8e23db16d720967533d056fa
|
31.6 kB | Preview Download |
md5:3313b496753295dcc8e113f9a146d84c
|
50.9 kB | Preview Download |
md5:d542db68fd00689990a88806abb5fa5b
|
44.7 kB | Preview Download |
md5:e3b2686e1648b5ade84f4af9c03da490
|
60.1 kB | Preview Download |
md5:299f52aa52a16084c621d391cac312cc
|
308.0 kB | Preview Download |
md5:48e1885818324bdda7eb4f529d495b7d
|
463.0 kB | Preview Download |
md5:38c77c189e7fe02dd2c872127f972561
|
184.7 kB | Preview Download |
md5:38c77c189e7fe02dd2c872127f972561
|
184.7 kB | Preview Download |
md5:8d821761b929e5e02dc209ef142da7c7
|
41.4 kB | Preview Download |
md5:3247514a83fe40e6c280124f0e7327ef
|
105.3 kB | Preview Download |
md5:18c78a77c076b93c6df60b2e077829d0
|
25.1 kB | Preview Download |
md5:21e85d3aeae042197874c0362a2e3b37
|
42.0 kB | Preview Download |
md5:04ce0f7dc514a390ebb8887097faaa4e
|
144.5 kB | Preview Download |
md5:2931131b04320003ee85894fc9dc8d83
|
70.9 kB | Preview Download |
md5:1c1848c06c45dc46e2fe55705aa9f152
|
65.6 kB | Preview Download |
md5:9b23e476d6b0b57578ab916170279bde
|
53.5 kB | Preview Download |
md5:9fe51990f305f1ddaccae0500d6038b3
|
32.2 kB | Preview Download |
md5:9fe51990f305f1ddaccae0500d6038b3
|
32.2 kB | Preview Download |
md5:a656f3446a7008ca032de66e454d47dc
|
95.8 kB | Preview Download |
md5:8eef293e8269550df2f5e78c8e2eb6de
|
301.8 kB | Preview Download |
md5:0e9beb6d8ccaed8c681d71ab1a1baafa
|
82.1 kB | Preview Download |
md5:b902b99896803dfcbdcc541e88f7962e
|
7.8 kB | Preview Download |
md5:b98d503bbcbb711a2d036ab9794c3c4d
|
29.2 kB | Preview Download |
md5:ecb725aaa3038f467ef1f2db23cc1d38
|
31.1 kB | Preview Download |
md5:7ac9c9e5c6b39c131baff8fdce7e1a07
|
7.0 kB | Preview Download |
md5:b70bc777423c5b52e31733ca98f35aaf
|
39.4 kB | Preview Download |
md5:3ff6c98225d577dcb459d0d400752d3b
|
32.9 kB | Preview Download |
md5:842ffbe8f5a73edcf2cc18116afd32c1
|
46.1 kB | Preview Download |
md5:6874b6c2209262da08cbb865eb390022
|
29.5 kB | Preview Download |
md5:d0a192c4ecf33a1470abaa14b393d93a
|
115.1 kB | Preview Download |
md5:842ffbe8f5a73edcf2cc18116afd32c1
|
46.1 kB | Preview Download |
md5:9c4744bd3fd98f92fdb8057810a633d2
|
91.4 kB | Preview Download |
md5:9f75bdb06ec1ee439352b24a71dd5998
|
25.8 kB | Preview Download |
md5:3247514a83fe40e6c280124f0e7327ef
|
105.3 kB | Preview Download |
md5:157055a6d03bd7066a5c72b4aace465b
|
41.3 kB | Preview Download |
md5:04ce0f7dc514a390ebb8887097faaa4e
|
144.5 kB | Preview Download |
md5:c5ca502d831d728f237c6b2893e2096a
|
25.6 kB | Preview Download |
md5:7ec0afbb1f3c6d01c9f8ece89d49e67f
|
24.6 kB | Preview Download |
md5:3919b32b8c1f058cde953b4b4e597b29
|
37.3 kB | Preview Download |
md5:aa833708347acfbfb46a9be4dd7b6585
|
118.1 kB | Preview Download |
md5:38f8980a9d496e34a9be0bb7eed9f82a
|
128.9 kB | Preview Download |
md5:33eca90817294713c3ea0972c091031b
|
40.3 kB | Preview Download |
md5:010f73c9a103d4e7ad68fd16ba8631f7
|
30.4 kB | Preview Download |
md5:3b62b0c0b3fa7535ff782a1dc01f93bc
|
32.3 kB | Preview Download |
md5:bf17dfda2ad80b0f9c76017a0f4b0761
|
26.7 kB | Preview Download |
md5:6cae729d47947f3573b07308343563d9
|
32.0 kB | Preview Download |
Additional details
Dates
- Available
-
2025-04-02
Software
- Repository URL
- https://github.com/JulianDelBel/Adelic
- Development Status
- Active