Published March 28, 2025 | Version v1
Publication Open

Adelic Aligned p-adic Spacetime

Description


This work presents a unification of number-theoretic, geometric, and quantum gravitation through an adelic spacetime framework. We establish:

(1) operator closure in recursive hypergeometric calculus.

(2) Gromov-Hausdorff convergence of fractal spacetime limits.

(3) empirical matches to gravitational wave data (GW150914), galactic rotation curves, and CMB anomalies.

 

The framework eliminates dark matter requirements through dimensional feedback mechanisms while maintaining compatibility with standard quantum operator algebras.


This work advances the unification of number theory, fractal geometry, and quantum gravity through a refined \textit{adelic spacetime} framework. Generalized Hypergeometric Operator Algebras with connections to Langlands reciprocity. Enhanced Fractal Convergence via prime-modulated Ricci flows.  Machine Learning-Augmented Predictions for dark energy and quantum gravity. Experimental Proposals to test adelic spacetime via optomechanical quantum simulators. Empirical validations now include LIGO-Virgo O4 data, JWST galactic observations, and CMB-S4 simulations. The framework resolves the Hubble tension and eliminates dark sector dependencies through adelic dimensional reduction.

Files

Adelic Aligned p-adic Spacetime.pdf

Files (189.6 MB)

Name Size Download all
md5:d0fbfc63ebac6404881ed42ba600fd60
173.0 kB Preview Download
md5:1bc6d6de4e25b424255e14bcb53d90a2
132.7 kB Preview Download
md5:bd7571d8e545ef855256265a00f30947
728.8 kB Preview Download
md5:0744415596fa06b8a3834a027f3684a2
290.0 kB Preview Download
md5:d9416b500ab91fe23906c247fc7b3b88
37.1 kB Preview Download
md5:c195bf81199ca669582aaec447e629c1
26.9 kB Preview Download
md5:828b2ac1e70910047b55959114f9e940
124.0 kB Preview Download
md5:0182e86278920b4cc8b3a6d073d8f4d7
35.2 kB Preview Download
md5:980e77c7d1210c904652b76719afa74f
62.4 kB Preview Download
md5:c5c8adef37798f61097ecfcd0fe2d342
7.0 kB Preview Download
md5:1d832362f3fd51868efa765de38bc590
32.7 kB Preview Download
md5:caeb9cfa847f74e9b626b9ccf0a7cf83
31.0 kB Preview Download
md5:ce0f79ce349e8b265e206852dba3f04d
16.9 kB Preview Download
md5:50644ba87ba8ccfa4265f7d147fc69f5
394.8 kB Preview Download
md5:6e0e24be8e23db16d720967533d056fa
31.6 kB Preview Download
md5:3313b496753295dcc8e113f9a146d84c
50.9 kB Preview Download
md5:e3b2686e1648b5ade84f4af9c03da490
60.1 kB Preview Download
md5:48e1885818324bdda7eb4f529d495b7d
463.0 kB Preview Download
md5:8d821761b929e5e02dc209ef142da7c7
41.4 kB Preview Download
md5:3247514a83fe40e6c280124f0e7327ef
105.3 kB Preview Download
md5:18c78a77c076b93c6df60b2e077829d0
25.1 kB Preview Download
md5:21e85d3aeae042197874c0362a2e3b37
42.0 kB Preview Download
md5:2931131b04320003ee85894fc9dc8d83
70.9 kB Preview Download
md5:a316b061e8794a7f9c28adb5ccc6484d
185.1 MB Preview Download
md5:e36d85e1af364cc90bf87c94c84c7267
3.9 kB Preview Download
md5:1c1848c06c45dc46e2fe55705aa9f152
65.6 kB Preview Download
md5:9b23e476d6b0b57578ab916170279bde
53.5 kB Preview Download
md5:a656f3446a7008ca032de66e454d47dc
95.8 kB Preview Download
md5:8eef293e8269550df2f5e78c8e2eb6de
301.8 kB Preview Download
md5:c466c46db9bea6d87ce14470be03324f
214.0 kB Preview Download
md5:b902b99896803dfcbdcc541e88f7962e
7.8 kB Preview Download
md5:b98d503bbcbb711a2d036ab9794c3c4d
29.2 kB Preview Download
md5:ecb725aaa3038f467ef1f2db23cc1d38
31.1 kB Preview Download
md5:7ac9c9e5c6b39c131baff8fdce7e1a07
7.0 kB Preview Download
md5:b70bc777423c5b52e31733ca98f35aaf
39.4 kB Preview Download
md5:d0a192c4ecf33a1470abaa14b393d93a
115.1 kB Preview Download
md5:8e86613203938b87fe4b744cf397995f
68.7 kB Preview Download
md5:3247514a83fe40e6c280124f0e7327ef
105.3 kB Preview Download
md5:1481bc267e7ae679fa28f3516f3066a0
20.6 kB Preview Download
md5:c0392bd7fd561d90d9fb1be280a1e543
81.6 kB Preview Download
md5:c5ca502d831d728f237c6b2893e2096a
25.6 kB Preview Download
md5:b9fcbbbb0d2f3e6c2a3554d9d6f68ee9
29.9 kB Preview Download
md5:3919b32b8c1f058cde953b4b4e597b29
37.3 kB Preview Download
md5:38f8980a9d496e34a9be0bb7eed9f82a
128.9 kB Preview Download
md5:010f73c9a103d4e7ad68fd16ba8631f7
30.4 kB Preview Download

Additional details

Software

Repository URL
https://github.com/JulianDelBel/Adelic
Programming language
Python
Development Status
Active