Published December 10, 2024 | Version v1
Dataset Open

Bed Surface Profiling (BSP) data used for calculating pickup probability

  • 1. ROR icon Zhejiang University

Description

Bed Surface Profiling (BSP) data

The Bed Surface Profiling (BSP) data scanned by an underwater 3D laser scanner for different flow conditions (Case Nos. 1-12). The sampling rate was 10 Hz. Each line of data corresponds to the xyz point cloud data, where x-direction corresponds to streamwise direction, y-direction to trnasverse dirction, and z-dirction to vertical direction. 

Code

A python code is included to process the BSP data for calculating sediment pickup probability for each case. This code analyzes 12 case files (Case1.txt to Case12.txt) containing measurement data, processes them using dynamic denoising filters, and calculates a derived metric (p_value) for each case. The results are saved in an Excel file.

Key Components

  1. Dynamic Denoising Filter (dynamic_denoise_filter):

    • Implements two filtering schemes based on parameter d:
      • 3-Window Rule (d=0.00185): Checks immediate neighbors (previous and next columns) to correct 0, 1, or -1 values.
      • 11-Window Rule (d=0.00380): Uses a larger window (11 columns) with different criteria:
        • For zeros: Requires immediate neighbors (columns 4 and 6) to be zero.
        • For ±1: Requires all non-center columns (first 5 and last 5) to match the target value.
  2. Case Processing (process_case):

    • Data Loading: Reads CSV-like files, extracts y (2nd column) and z (3rd column) values.
    • Derivative Calculation: Computes dz as the finite difference of z values scaled by d.
    • Marker Matrix: Creates a matrix m marking regions where dz exceeds ±0.
    • Denoising: Applies dynamic_denoise_filter to clean the marker matrix.
    • p-value Calculation:
      • Computes y_diff as half the absolute difference between adjacent y values.
      • Identifies valid transitions (1 → -1) in the denoised matrix.
      • Aggregates weighted counts and normalizes by the total y range.
  3. Parameter Settings:

    • **d Values**:
      • 0.00185 for Cases 1–6
      • 0.00380 for Cases 7–12
    • Critical Value (cr): Set to 0 for thresholding dz.
    • Data Directory: Configured as D:/data_ana_ca.
  4. Output:

    • Results are saved in analysis_result_ca_cr.xlsx with columns Case and p_value.

Usage

  • Input: 12 text files (Case1.txt to Case12.txt) with comma-separated data.
  • Output: Excel file containing calculated p-values.
  • Runtime Monitoring: Prints processing time for each case during execution.

The code efficiently handles large datasets using vectorized operations and sliding window techniques, ensuring scalability for similar analytical tasks.

Files

calculate_pickup_probability_from_bed_level_data.ipynb

Files (2.2 GB)

Name Size Download all
md5:5f9230281f289a61929e1b54644d70d2
5.5 kB Preview Download
md5:fb7a4d2844335c71438b3cdb41c7597f
187.6 MB Preview Download
md5:ef02c0093c2f9dbf37d7c649bb788372
177.4 MB Preview Download
md5:767e694a6c7144386aae10c4075daa23
183.0 MB Preview Download
md5:754468d738520e30aa09114268ead29f
169.6 MB Preview Download
md5:f3d35014d49d0a4eaad030396e6f1294
182.5 MB Preview Download
md5:66c55ef2b492943da0b3b26dce677ea5
187.9 MB Preview Download
md5:f208b8eb9fad8caeb9a32493dd8703c9
188.8 MB Preview Download
md5:826d209af00b06ccca044716139125d1
199.3 MB Preview Download
md5:51bd3730b73445687c6262f85509231c
184.6 MB Preview Download
md5:e98b234fdaed4b7e60949ec189e67544
178.7 MB Preview Download
md5:24c535450afc19cc805186af7d594312
182.6 MB Preview Download
md5:ba2116da998efe6a087f8c614c76020a
182.4 MB Preview Download