Published March 22, 2025 | Version v1
Publication Open

Quantum-Consistent Adelic Integration

Description

Adelic integration emerged in reconciling quantum field theoretic models with number-theoretic methods. In this work, we develop a quantum-consistent framework wherein contributions from the real continuum and the p-adic spectrum are integrated with Euler-like prime factors. A critical aspect of our model is the anomaly detection mechanism, which is essential for ensuring that recursive expansions do not propagate numerical instabilities. 1 Introduction Here we construct a framework for adelic integration, combining real and p-adic contributions, to achieve quantum consistency. We demonstrate that the product of an enormous real factor R ≈ 6.98 × 10117 and a minuscule p-adic factor P ≈ 1.43 × 10−118, when balanced by a normalization factor dx4 in 4-dimensional spacetime, yields Λ = 1.0 with negligible deviation (∼ 10−101). Statistical validation through prime contribution analysis and topological consistency checks confirms the robustness of this approach. The results suggest deep connections between prime number distributions and spacetime geometry in quantum gravity theories. Physical phenomena emerge from the combined contributions of all ”places” – including the real continuum and p-adic number fields. We present a concrete implementation of this principle through precise numerical integration, demonstrating how these divergent contributions can be reconciled to produce normalized physical quantities.

Files

cit (35) (5).pdf

Files (8.9 MB)

Name Size Download all
md5:bbf6d3c3769757cb254650201244a52a
93.2 kB Preview Download
md5:72856cfccdf5b88b2f419d146286c707
452.8 kB Preview Download
md5:ad2e03e1ed691774a5856fc097f6c68b
1.2 MB Preview Download
md5:d5cb66b3ade9b5710c4263369c5047f9
171.2 kB Preview Download
md5:104c6a46a53dbabc433fc76409884322
30.9 kB Preview Download
md5:ed04e13d8db7ad2ad1cb74e46ace9f27
108.8 kB Preview Download
md5:beaef0ddf604e3b4d88febf8cf6c0053
36.9 kB Preview Download
md5:6a9f7da2ae4c3ee4fec20bc62f29f18f
193.9 kB Preview Download
md5:bdaa840cd66123debce967f7b3ffed0f
42.5 kB Preview Download
md5:d4e7c74adbf93b8be9b6c9ef79c8d584
74.3 kB Preview Download
md5:94a3f92c5b0950a017fe1227f2e06597
117.8 kB Preview Download
md5:adeb235520be5bd8e6963f0c6ce20793
28.8 kB Preview Download
md5:f029811b2314f14c9654b8658cd94638
45.8 kB Preview Download
md5:bd5da9b1c55a6f143d9da740f0730084
774.6 kB Preview Download
md5:bd5da9b1c55a6f143d9da740f0730084
774.6 kB Preview Download
md5:d96cb87976a84cf683d8c3d9d8b0efbb
41.2 kB Preview Download
md5:1647fe2810afe1db379c533c2f205013
36.6 kB Preview Download
md5:ffc0397293af2801b5067da4a93ca9c5
90.9 kB Preview Download
md5:1d610b1c5d4b22be73cbc168ca7275c6
97.0 kB Preview Download
md5:10220f1e75be59efeba2f8749d37c3b0
92.9 kB Preview Download
md5:31acfbc0db1f41a642c863c01041d659
90.9 kB Preview Download
md5:6e5ae74cb583c774a7051561a0d97804
89.2 kB Preview Download
md5:592256757e19fb3e7517699fa7c7bee0
68.5 kB Preview Download
md5:64207aed957f879ee64d65d4e550a62a
143.9 kB Preview Download
md5:f7fce0abac9b20cc043aa3528aa7a796
136.7 kB Preview Download
md5:abed19732759461279314ea8d62d654c
85.4 kB Preview Download
md5:cd7459623b0090f622fde97517f1cf3a
24.0 kB Preview Download
md5:28a62a736c1c29be1ded7bd861d8de81
23.4 kB Preview Download
md5:2f12881ab5f4e96623302da821b3bf92
162.2 kB Preview Download
md5:5478894f11822ac8e93b755872489a8f
168.0 kB Preview Download
md5:f1329f1bc601d194c118a0208b2a281c
210.3 kB Preview Download
md5:e409e67fdb7cbc51e104d6746ba9e6c7
136.9 kB Preview Download
md5:a94f777911a4285bd3803e255b06ab0a
78.5 kB Preview Download
md5:cabb2d201ce0c6c210d414ecd0c53f63
2.9 MB Preview Download
md5:3d276328119be9bb94b2fb368fac9606
152.5 kB Preview Download

Additional details

Dates

Available
2025-02-15