Published March 3, 2025 | Version 1.0
Dataset Open

Daily Snow Cover Fraction (SCF) for the nine river basins across Europe (1st October 2017 - 30th September 2023)

Description

The Snow Cover Fraction (SCF) product is based on high-resolution snow cover. 

The product is generated through a data fusion method that relies on a low-resolution SCF product and a high-resolution product, both based on optical data. In detail, the high-resolution snow cover is derived from Sentinel-2. For the Adige river basin the SnowFLAKES classification method is used to produce snow cover maps - see Barella, R., Marin, C., Gianinetto, M., & Notarnicola, C. (2022, July). A novel approach to high resolution snow cover fraction retrieval in mountainous regions. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 3856-3859). IEEE.) For the other basins,  the Copernicus Fractional Snow Cover (FSC) product is used (see https://land.copernicus.eu/en/products/snow/fractional-snow-cover). Regarding the low-resolution SCF product, MOD10A1 product derived from MODIS is used (see https://nsidc.org/data/mod10a1/versions/61). For details about the data fusion approach, see the method proposed by Premier et al., 2021.

The dataset contains daily SCF information (0 - 100 %) per pixel. The product is aggregated at the spatial resolution of the LISFLOOD model (i.e., approximately 1.4 km). Water bodies are masked out (no data are marked here as -999). The dataset is used to evaluate the snow module of the LISFLOOD model and to calibrate the snowmelt coefficient. 

Files

Files (646.2 MB)

Name Size Download all
md5:99bc97a9789b41e4c9b54febe8f1c7f8
32.6 MB Download
md5:b14028a1414df447d3c1bb7506a85a4c
32.6 MB Download
md5:c43e70c02e3cda7d37ad0370ac88c393
32.7 MB Download
md5:edbbf6156037c43480d150c4a36ade86
32.6 MB Download
md5:b18aec2ffbffe3554203ceb2bdc66874
32.6 MB Download
md5:92f79c0522aaf4e12c7bf10c498435b0
32.6 MB Download
md5:440d2c7e2231baa29e5bad148de58027
15.3 MB Download
md5:9f4a28eb9839165616f44b0b36f952fd
15.3 MB Download
md5:ae8650c6c90c75bd3f8f13c7172e73de
15.3 MB Download
md5:802f00054361b39b0b62495844bd3aec
15.3 MB Download
md5:90a25ea468b16c52adb0a2a7317664c0
15.3 MB Download
md5:3288562092d2fe36e5f7ad33fd767ffd
15.3 MB Download
md5:0b52d7574858dabeb93f2e45f7a82f40
3.9 MB Download
md5:1b16d86183e4ab92d256531360830d3f
3.9 MB Download
md5:57786031517ebf1a572986396f5e6987
3.9 MB Download
md5:98ad0025c3e07fdc28e66bd89c4f3e30
3.9 MB Download
md5:2f830c77246d6da4009fc1ef64e8dd7f
3.9 MB Download
md5:6c1312399f378e4ff2bdbd36aa7fe48d
3.9 MB Download
md5:d96609d0fad6a28c47d7b0f66d2c8337
8.6 MB Download
md5:b5416233b211aa6fa527ff60d898c8ec
8.6 MB Download
md5:dee65fac1e7274cbe58dacb8ef931e62
8.6 MB Download
md5:28ac076309af612c8e7c88731569c3cf
8.6 MB Download
md5:7d09c54d955d17e7ccb58dbc0571c639
8.6 MB Download
md5:5a4345d0275d8609a5764727a9593bc8
8.6 MB Download
md5:62411ce3480e17d91be4a00a6dff71d5
1.6 MB Download
md5:73dc8a2e3e37ae0c59029d8f0b12c92c
1.6 MB Download
md5:36e3472c30d37b86738b59659a2944dc
1.6 MB Download
md5:3fe160b94c8ba5298472f1b36bc0fb89
1.6 MB Download
md5:26e9a9c02479dc1030e485126c81d571
1.6 MB Download
md5:f3ea961d9932fe92690bdccd7eed3411
1.6 MB Download
md5:b998fed0b44577562d047a3c9eb4bf57
2.7 MB Download
md5:bb54cfe24685cfdb0c32d802dbdd6905
2.7 MB Download
md5:8604f712fc4a3242ffd2be7ada7dd72e
2.7 MB Download
md5:4c8a6105acb0f8e5a777e3d0ca7f257c
2.7 MB Download
md5:6f7f0964d3b62d609232e419da2fdcdd
2.7 MB Download
md5:872ff1d0bb2dafbdc632207212ae4d79
2.7 MB Download
md5:347bf5218a2576416d7f0bd7c484f3bf
9.1 MB Download
md5:5b7e936f8e7a272cb9b53edc9468e4ed
9.1 MB Download
md5:785fef2b37bf8cb12f0d35b32f755405
9.1 MB Download
md5:d793635432565f958d198e6bd021ba07
9.1 MB Download
md5:06bcfe7144d4213d0f206104e71c982e
9.1 MB Download
md5:80c5c9e18f233e44ffe90b494c5170f6
9.1 MB Download
md5:ab6943c7d2cfe7963cbf005a8d3ad0d6
13.0 MB Download
md5:c0540363c61d1849e3f9f9bee6bcc1ac
13.0 MB Download
md5:7d1d685b3da0e3946641ca7f571f4faf
13.1 MB Download
md5:1c1d9faface66a4154e4b0f3955fd4cc
13.0 MB Download
md5:d90cd464e3f92e0ee7ee087acf4b1267
13.0 MB Download
md5:33cb6280ea01cf691f74d6730f7fa791
13.0 MB Download
md5:65f642c8aea6e6e1d42018e26396e2c2
20.9 MB Download
md5:eabff2784269090824e372298a1532d6
20.9 MB Download
md5:0b55043c270113a7fe473d0aeff15b2f
20.9 MB Download
md5:4e431b49a3cc80ddb91f303bd4a9d29f
20.9 MB Download
md5:94e2389fa62c77c5b3042520beb86fa4
20.9 MB Download
md5:90477636885d23926af82fc65558c4b8
20.9 MB Download

Additional details

Related works

Is derived from
Conference paper: 10.1109/IGARSS46834.2022.9884177 (DOI)
Dataset: 10.2909/3e2b4b7b-a460-41dd-a373-962d032795f3 (DOI)
Dataset: 10.5067/MODIS/MOD10A1.061 (DOI)
Is described by
Journal article: 10.1109/JSTARS.2021.3103585 (DOI)

Funding

Joint Research Centre
Support to LISFLOOD model development: testing of the snow module JRC/IPR/2023/VLVP/2678
European Space Agency
CCI+ PHASE1 – NEW ECVS [SNOW] 4000124098/18/I-NB
European Space Agency
ALPSNOW 4000132770/20/I-NB