Published February 24, 2025 | Version 1
Dataset Open

US-CoastEX: Observation-based probabilistic reanalysis of storm surge and sea level extremes for United States (1950-2020)

  • 1. ROR icon University of Central Florida
  • 1. ROR icon University of Central Florida
  • 2. EDMO icon Princeton University
  • 3. ROR icon Universitat de les Illes Balears
  • 4. EDMO icon Tulane University
  • 5. ROR icon Rutgers, The State University of New Jersey
  • 6. EDMO icon U.S. Geological Survey

Description

NOTE: all data and associated articles (listed below) require proper acknowlement, citation and referencing of all data when directly or indirectly using any archived file listed below.

US-CoastEX provides:

Extreme storm surge PREDICTIONS (ungauged sites):

1) BAYESL-TG (standard version): skew surge distributions from BAYEX model informed with annual maxima skew surge (m) from standard hourly tide gauge data only between 1950-2020.

Filename #1: BAYEX-TG_GEV_PRED (name in data descriptor  'BAYESL-TG_GEV_PRED-TG')

and

2) BAYESL-TG/EXT (extended): skew surge distributions from BAYEX model informed with annual maxima skew surge (m) from standard hourly tide gauge data only between 1950-2020 complemented with updated annual maxima extracted from additional complementary data sources (e.g., inferred extremes, last recorded extreme water levels, high water marks and other data).

Filename #2: BAYEX-TG-EXT_GEV_PRED (name in data descriptor  'BAYESL-TG-EXT_GEV_PRED ')

In each file, we provide:

BAYEX GEV parameters at U.S. ungauged locations

Indicator name

Dimensions for GEV parameters (samples x sites x years - for μ)

Units

Latitude

BAYEX_LAT_PRED

1712 (ungauged sites)

Degrees

Longitude

BAYEX_LON_PRED

1712 (ungauged sites)

Degrees

Predicted Shape (ξ)

BAYEX_GEV_SHAPE_PRED

6000 x 1712

-

Predicted Scale (σ)

BAYEX_GEV_SCALE_PRED

6000 x 1712

m

Predicted Location (μ)

BAYEX_GEV_LOC_PRED

6000 x 1712 x 71 (years)

m

 

Extreme sea level PREDICTIONS (ungauged sites):

1) BAYESL-TG (standard version): ESL data obtained by combining BAYEX-TG data with tidal peaks from TPXO9v5. 

Filename #3: BAYEX-TG_ESL_PRED (name in data descriptor  'BAYESL-TG_ESL_PRED ')

Note: newer tidal products can be combined with BAYESL-TG data

and

2) BAYESL-TG/EXT (extended): ESL data obtained by combining BAYEX-TG/EXT data with tidal peaks from TPXO9v5

Filename #4: BAYEX-TG-EXT_ESL_PRED (name in data descriptor  'BAYESL-TG_EXT_ESL_PRED ')

Datum: ESL estimates are relative to mean sea level (MSL) as tidal elevations from TPXO are referenced to MSL.

In each file, we provide:

ESL return periods (up to 1000 years) at U.S. ungauged sites

Indicator name

Dimensions for ESL estimates (sites x return periods x percentile statistics: 50th, 5th and 95th)

Units

Latitude coordinates

BAYEX_LAT_PRED

1712 (ungauged sites)

Degrees

Longitude coordinates

BAYEX_LON_PRED

1712 (ungauged sites)

Degrees

Estimated return levels using Method  1 (Convolution)*

BAYEX_RL_ESL_CONV_TPXO

1712 x 999 x 3

m

Estimated return levels using Method 2 (MHW)*

BAYEX_RL_ESL_MHW_TPXO

1712 x 999 x 3

m

Estimated return levels using Method 2 (MHHW)*

BAYEX_RL_ESL_MHHW_TPXO

1712 x 999 x 3

m

Estimated return levels using Method 2 (HAT)*

BAYEX_RL_ESL_HAT_TPXO

1712 x 999 x 3

m

*represent different methods of combining extreme storm surge data with tidal peak data (see complementary articlesfor further details). The tidal data from TPXO can be found here (https://www.tpxo.net/global/tpxo10-atlas).

Note: other tidal products can be combined with BAYESL-TG/TX data to obtain extreme sea level predictions from BAYEX data.

Data limitations are discussed in its data descriptor listed below.

NOTE: all data and associated articles (listed below) require proper acknowlement, citation and referencing of all data when directly or indirectly using any archived file listed above.

Associated data descriptor:

Morim, J., Rasmussen, D.J., Wahl, T. et al. US-CoastEX: Observation-based probabilistic reanalysis of storm surge and sea level extremes for United States (1950-2020). Scientific Data (2025).

Associated research publications:

Morim, J., Wahl, T., Rasmussen, D.J. et al. Observations reveal changing coastal storm extremes around the United States. Nature Climate Change (2025). https://doi.org/10.1038/s41558-025-02315-z

Associated data:

1. Morim, J. (2024). National estimates of U.S. storm surge extremes and underlying long-term trends (1950-2020) using spatiotemporal non-stationary Bayesian Hierarchical Modeling [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10944076

BAYEX model:

Calafat, F. M. (2024). BAYEX: Spatiotemporal Bayesian hierarchical modeling of extremes with max-stable processes (v3.0). Zenodo. https://doi.org/10.5281/zenodo.10967174

Media:

https://cpree.princeton.edu/news/2025/researchers-uncover-clearer-patterns-extreme-storm-surge-trends-amid-rising-sea-levels

Files

Files (12.3 GB)

Name Size Download all
md5:69a37e3e05f4d03f29c42d7b393714c0
6.0 GB Download
md5:f66366fba279501a5ea11e82987638dc
164.3 MB Download
md5:f98ac0ff87cbffeeb2e7a72b951139dd
6.0 GB Download
md5:73f9c508d755587aca0393447765dd49
164.3 MB Download

Additional details

Related works

Is derived from
Model: https://zenodo.org/records/10967174 (Other)
Is supplement to
Journal article: 10.21203/rs.3.rs-5449455/v1 (DOI)