Published February 24, 2025 | Version 1.2
Model Open

Global Ensemble Digital Terrain Model (GEDTM30): a Tile Example of Local Enhanced Modeling via Transfer Learning

  • 1. OpenGeoHub

Description

This repository stores the covariates, the model, the additional samples to run a global-to-local modeling of GEDTM project (https://github.com/openlandmap/GEDTM30). Please visit here for the script of the showcase. The script describes a pre-trained random forest model (global.model_gedtm30.lz4) that is successively trained by the additional local samples (local_samples.csv). With the data from (covariates list). 

Below is the explanation of the covariates, the model and the additional samples.

File description:

global.model_gedtm30.lz4 random forest model trained by global stratified terrain samples of GEDI02 and ICESat-2 ATL08 v6.

local_sample.csv: the local samples of GEDI02 and ICESat-2 ATL08 v6. dtm_y: the terrain height from global Lidar

covariates list:

  • dsm_glo.tiff: Copenricus GLO30 DEM (doi.org/10.5270/ESA-c5d3d65
  • dsm_aw3d30 ALOS AW3D30 DEM (Takaku et al. 2014, Tadono et al.)
  • building.height_ghsbuilth.tiff: GHS building height ~100m resolution, resampled by cubicspline (10.2905/85005901-3A49-48DD-9D19-6261354F56FE)
  • tree.cover_glad.tiff: tree cover precentile (Potapov et al. 2021)
  • building.height_3dglobfp.tiff: global three-dimensional building footprint dataset, vector dataset, rasterized to ~30m resolution (Che et al. 2024)
  • canopy.height_glad.tiff: canopy height from GLAD (Potapov et al. 2021)
  • edge.canopy.height_glad.tiff: edge canopy height by Sobel filter, derived from GLAD canopy height 
  • canopy.height_eth.tiff: canopy height model from ETH (Lang et al. 2023)
  • edge.canopy.height_eth.tiff:edge canopy height by Sobel filter, derived from ETH canopy height
  • slope_etopo2022.tiff: earth topography 2022 (etopo 2022) global dem dataset ~500m resolution, resampled by cubicspline (MacFerrin et al. 2024)
  • lcluc.change_glad.tiff: land use land cover change (Potapov et al. 2020)
  • Landsat indices (Potapov 2020):

ndvi.p025_2006.2010.tiff
ndvi.p50_2006.2010.tiff
ndvi.p975_2006.2010.tiff
ndvi.p025_2011.2015.tiff
ndvi.p50_2011.2015.tiff
ndvi.p975_2011.2015.tiff
nir.p025_2006.2010.tiff
nir.p50_2006.2010.tiff
nir.p975_2006.2010.tifff
nir.p025_2011.2015.tiff
nir.p50_2011.2015.tiff
nir.p975_2011.2015.tif
ndwi.p025_2006.2010.tiff
ndwi.p50_2006.2010.tiff
ndwi.p975_2006.2010.tiff
ndwi.p025_2011.2015.tiff
ndwi.p50_2011.2015.tiff
ndwi.p975_2011.2015.tiff

Note: nir,ndvi,ndwi: Near infra-red, Normalized Difference Vegetation Index, Normalized Difference Wetness Index. p025, p050,p975: precentile 2.5, 50, 97.5.

Files

building.extent_wsf2019.tiff

Files (2.8 GB)

Name Size Download all
md5:952ffc1900ba48f5dc0025d62f3e926f
1.5 MB Preview Download
md5:a6f359dc514b6ceaed0148f745808036
43.6 kB Preview Download
md5:acec829eb6f7e14e2446a2c32a19dfd8
58.4 MB Preview Download
md5:1348dc588b485d603b6f25bca1bb77fc
6.9 MB Preview Download
md5:b51320c15e7b74b355637d674e710970
5.6 MB Preview Download
md5:76a22daea7f28ac45cfba386b782b4bc
12.6 MB Preview Download
md5:3c141f81f076e8d113228003260bc6da
12.4 MB Preview Download
md5:aaba11111cec3d25f8b61ae905a932b4
47.4 MB Preview Download
md5:355a6e75101cab815d8a0d3262a8f31b
39.7 MB Preview Download
md5:6a6133aeb5597682c9d270c7509b922e
2.3 GB Download
md5:a5f04ec86f42c79bd52ac8482caac3df
8.8 MB Preview Download
md5:cdca201332d32b1c9db7091d203e71d6
54.6 MB Preview Download
md5:9c3e69bcebde2b5c11c3e9cfaf5ec0e6
10.6 MB Download
md5:cd8297b20c5ed1927dbe03e171834b55
11.0 MB Preview Download
md5:8d2b97b1e459df9d91b34216beb139fa
10.0 MB Preview Download
md5:a991766df91ea89c27996e989a5373e5
10.3 MB Preview Download
md5:5738e58301e34bded358ccd38e50aadd
9.9 MB Preview Download
md5:125483594d6fcb2ebeb032b08ffef2eb
10.1 MB Preview Download
md5:62f7d56257eda483aef64c35d4bde22e
10.3 MB Preview Download
md5:c252d717be162dd3dbd9e5124e5e0266
10.6 MB Preview Download
md5:19285434fb318b9148abc0ac57fcefa0
9.9 MB Preview Download
md5:471c2da212043ff6545a9e7d8a274e5e
10.1 MB Preview Download
md5:1e82e30d6cb8de3add4b8367307fcbe7
10.1 MB Preview Download
md5:70d5e8fa11e5c35919b3ff0908c93197
10.3 MB Preview Download
md5:9df892094e34b812adad0686ccbb3311
9.8 MB Preview Download
md5:1e1531206c7b9ea11647fc2e181242fa
10.2 MB Preview Download
md5:e607a793a4833e3cc697a6c9e13f9028
9.1 MB Preview Download
md5:0292db773c54bea981a26ff84f117a1b
9.2 MB Preview Download
md5:8e998ecdcbc5a35545a07bf0d940eed5
10.0 MB Preview Download
md5:ddb4b7fde38b729ff55cfe8c04d79310
10.4 MB Preview Download
md5:a199388e334515467aa9847daf9c05e8
10.0 MB Preview Download
md5:48f242230d7960003a529ad3b4b6984a
10.7 MB Preview Download

Additional details

Funding

European Commission
OEMC - Open-Earth-Monitor Cyberinfrastructure 101059548
European Commission
AI4SoilHealth - AI4SoilHealth: Accelerating collection and use of soil health information using AI technology to support the Soil Deal for Europe and EU Soil Observatory 101086179

References

  • Potapov, P., Hansen, M. C., Kommareddy, I., Kommareddy, A., Turubanova, S., Pickens, A., . . . Ying, Q. (2020). Landsat analysis ready data for global land cover and land cover change mapping. Remote Sensing, 12(3), 426
  • Lang, N., Jetz, W., Schindler, K., & Wegner, J. D. (2023). A high-resolution canopy height model of the earth. Nature Ecology & Evolution, 7(11), 1778–1789
  • Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M. C., Kommareddy, A., . . . others (2021). Mapping global forest canopy height through integration of gedi and landsat data. Remote Sensing of Environment, 253, 112165
  • Potapov, P., Hansen, M. C., Kommareddy, I., Kommareddy, A., Turubanova, S., Pickens, A., . . . Ying, Q. (2020). Landsat analysis ready data for global land cover and land cover change mapping. Remote Sensing, 12(3), 426
  • Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., . . . others (2024). 3d-globfp: The first global three-dimensional building footprint dataset. Earth System Science Data Discussions, 2024, 1–28.
  • MacFerrin, M., Amante, C., Carignan, K., Love, M., & Lim, E. (2024). The earth topography 2022 (etopo 2022) global dem dataset. Earth System Science Data Discussions, 2024, 1–24
  • Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., & Iwamoto, H. (2014). Precise global dem generation by alos prism. ISPRS annals of the photogrammetry, remote sensing and spatial1016 information sciences, 2, 71–76.
  • Takaku, J., Tadono, T., & Tsutsui, K. (2014). Generation of high resolution global dsm from alos prism. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information1019 Sciences, 40, 243–248.