Published February 19, 2025 | Version v1
Dataset Open

Sample data for training EPIC-IIASA global gridded crop model emulators

  • 1. ROR icon International Institute for Applied Systems Analysis

Description

This repository provides intermediary and output data required to reproduce the study Folberth et al. (submitted) "CROMES v1.0: A flexible CROp Model Emulator Suite for climate impact assessment". Associated code is provided in a separate repository at https://doi.org/10.5281/zenodo.14901127. Raw data can be obtained from the references.

 

The below folder structure shows how the project should be orgainzed to match the code repository. Herein, we provide separate zipped folders for the lowest level, e.g., processed, auxiliary.

 

project_name/                        ### Main folder, by default labelled cromes in the associated code repository
+-- data/                                ## All input and auxiliary data
¦   +-- raw/                             # Immutable raw data. Not included here but referenced in the publication
¦   +-- processed/                   # Cleaned and processed data. I.e., explanatory and target features for
¦   +-- auxiliary/                      # Data required for evaluations and visualization
¦   +-- temp/                          # Temporary storage of train/predict-ready feature files
+-- src/                                  ## All code required for training and evaluating emulators
¦   +-- features/                      # Feature engineering scripts (included in separate repository)
¦   +-- models/                       # Model training and evaluation scripts (included in separate repository)
¦   +-- visualization/               # Scripts for generating visualizations  (included in separate repository)
+-- output/                            ## Target folder for all outputs, here pre-populated
    +-- models/                       # Emulator model files
    +-- feature_importance     # Feature importances for pre-trained emulator models
    +-- figures/                        # Generated plots and figures (selected plots from the publication)
    +-- tables/                         # Generated tables (performance metrics, etc.)
    +-- predictions/                 # Generated crop yield predictions
    +-- evals/                           # Evaluations

Files

auxiliary.zip

Files (21.4 GB)

Name Size Download all
md5:71094560c3e9416e992f2a9d4119eca8
3.8 MB Preview Download
md5:5a1b680b2c6949a0b5114c87e30fe70a
4.8 kB Preview Download
md5:eb4710867d8a493d5970800829f3c4c9
5.5 kB Preview Download
md5:60a55f9524d2e5b4009b4bc01f4fb619
3.8 MB Preview Download
md5:f51ba18ddecebbdbca6b080167bacdd6
221.8 MB Preview Download
md5:f852ebfc43f136ba38586678d360ba53
5.3 GB Preview Download
md5:5fa486a57f2a7e5237af2dd741960956
15.9 GB Preview Download
md5:ddbcafd4bfc9f6cbddef5e8c37b6522f
442 Bytes Preview Download
md5:486a71f9e1d14d0436c1847e09a69331
5.5 kB Preview Download
md5:3f63e5767e699a158dccae0845e9c582
5.7 MB Preview Download
md5:b9f13374d475c1ad27e7e3968d6b2dd2
160 Bytes Preview Download

Additional details

Related works

Is supplement to
Software: 10.5281/zenodo.14901127 (DOI)

Funding

FWF Austrian Science Fund
Machine-learning crop meta-models for climate adaptation 10.55776/P36220