AirfRANS_clipped
- 1. Safran Tech, Digital Sciences & Technologies Department, Rue des Jeunes Bois, Châteaufort, 78114 Magny-Les-Hameaux, France
Description
This dataset is a new version of the dataset originally made available through the library and described in the paper.
It has 3 main differences:
- it is in PLAID format
- all meshes were clipped in a box
[-2, 4] x [-1.5, 1.5]
and converted to triangular meshes thanks to Paraview - A ML4PhySim_Challenge_train split is provided, corresponding to the training set of the ML4PhySim challenge
It has 2 variants:
Tips to access the data:
After decompressing the downloaded file:
from plaid.containers.dataset import Dataset
from plaid.problem_definition import ProblemDefinition
dataset = Dataset()
problem = ProblemDefinition()
problem._load_from_dir_(os.path.join(/path/to/data,'problem_definition'))
dataset._load_from_dir_(os.path.join(/path/to/data,'dataset'), verbose = True)
print("problem =", problem)
print("dataset =", dataset)
sample = dataset[0]
print("sample =", sample)
for fn in sample.get_field_names():
print(f"{fn} =", sample.get_field(fn))
for sn in sample.get_scalar_names():
print(f"{sn} =", sample.get_scalar(sn))
print("nodes =", sample.get_nodes())
print("elements =", sample.get_elements())
print("nodal_tags =", sample.get_nodal_tags())
Files
Files
(9.7 GB)
Name | Size | Download all |
---|---|---|
md5:2c2b2356992ee2ac6a3281a638d56a79
|
9.7 GB | Download |
Additional details
Related works
- Is documented by
- Software: https://plaid-lib.readthedocs.io/ (URL)
- Conference paper: arXiv:2212.07564 (arXiv)
- Is required by
- Conference paper: arXiv:2305.12871 (arXiv)
Dates
- Updated
-
2025-02-09